
Measurement 181 (2021) 109657

Available online 29 May 2021
0263-2241/© 2021 Elsevier Ltd. All rights reserved.

An accurate approach for obtaining spatiotemporal information of vehicle
loads on bridges based on 3D bounding box reconstruction with
computer vision

Jinsong Zhu a,*, Xingtian Li a,b, Chi Zhang a, Teng Shi a

a Key Laboratory of Coast Civil Structure Safety (Ministry of Education), School of Civil Engineering, Tianjin University, Tianjin, China
b School of Civil Engineering, Lanzhou Jiaotong University, Lanzhou, China

A R T I C L E I N F O

Keywords:
Bridge
Computer vision
Spatiotemporal information
Vehicle loads
Weighing

A B S T R A C T

Vehicle load is an important basis for bridge design, condition assessment, and maintenance and strengthening,
and its statistical laws can help us further understand the behavior of bridges under vehicle loads. Therefore, it is
important to obtain accurate vehicle weight and vehicle spatiotemporal information that reflects the load time
history. As of now, vehicle weight can be obtained using WIM technology, but there are still some issues in the
methods of obtaining vehicle information. The coordinate transformation method is simple to operate, but
sacrifices accuracy. The existence of a certain distance from the tail of vehicles to bridge decks makes the results
based on dual-target detection differ from the actual. Therefore, an accurate approach for obtaining spatio-
temporal information of vehicle loads on bridges based on 3D bounding box reconstruction with computer vision
is proposed in this paper. To achieve this, a deep convolutional neural network (DCNN) and the You Only Look
Once (YOLO) detector are used to detect vehicles and get the 2D bounding box. By establishing the relationship
between 2D and 3D bounding box of the vehicle, an algorithm for 3D bounding box reconstruction of vehicles is
proposed to get the sizes and position of vehicles. The spatiotemporal information of the vehicle loads is finally
obtained by using multiple objects tracking (MOT). To verify the accuracy and reliability of the proposed
approach, a bridge vehicle loads identification system (BVLIS) was developed and tested on a cable-stayed bridge
in operation. The results show that the approach is accurate and reliable, and can be used to obtain vehicle
information and provide vehicle load boundary conditions for bridge finite element modeling.

1. Introduction

As a major variable load on bridges, vehicle loads may lead to fatigue
cracking or even collapse of bridges. In addition, vehicle loads are also
an important basis for bridge design, condition assessment, safety
evaluation, and maintenance and strengthening, and the statistical laws
can help us further understand the behavior of bridges under vehicle
loads. Therefore, an accurate and reliable identification of vehicle loads
is very important, which includes vehicle weighing and the acquisition
of vehicle spatiotemporal information (i.e., type, position, size, speed
and trajectory, etc.).

The early methods to obtain gross vehicle weight (GVW) were static
weighing techniques [1], which had good accuracy, but were also
expensive and time-consuming. For weighing while the vehicle is in
motion, weigh-in-motion (WIM) techniques [2–4] were proposed.
However, the corresponding equipment is subject to damage from heavy

vehicles and is less durable. Later, the concept of bridge weigh-in-
motion (B-WIM) [5] was proposed and several B-WIM systems (e.g.,
Axway, Culway, and SiWIM) [6–8] were developed to obtain wheel
loads. Nonetheless, it is difficult to obtain accurate results due to the
effect of vehicle lateral position and vibration [9]. Therefore, the mov-
ing force identification (MFI) methods for obtaining the time history of
moving loads were proposed, including the interpretive method I (IMI)
[10], the interpretive method II (IMII) [11], the time domain method
(TDM) [12], and the frequency-time domain method (FTDM) [13].
Meanwhile, the researches in data analysis [14] and sensing technology
[15–18] were also done to improve the accuracy. However, the appli-
cation of dynamic algorithms to practice is difficult due to the large
amount of numerical calculation and the high demand on the finite
element model.

In recent years, the computer vision technology has been introduced
into the monitoring of infrastructure [19–22]. By using cameras for

* Corresponding author.

Contents lists available at ScienceDirect

Measurement

journal homepage: www.elsevier.com/locate/measurement

https://doi.org/10.1016/j.measurement.2021.109657
Received 5 March 2021; Received in revised form 10 May 2021; Accepted 23 May 2021

www.sciencedirect.com/science/journal/02632241
https://www.elsevier.com/locate/measurement
https://doi.org/10.1016/j.measurement.2021.109657
https://doi.org/10.1016/j.measurement.2021.109657
https://doi.org/10.1016/j.measurement.2021.109657
http://crossmark.crossref.org/dialog/?doi=10.1016/j.measurement.2021.109657&domain=pdf

Measurement 181 (2021) 109657

2

bridge deflections measurement and traffic monitoring, Ojio [23] pro-
posed a contactless bridge weigh-in-motion (cBWIM) system. Feng et al.
[24] introduced an innovative weighing method by estimating the
contact pressure of a vehicle tire and the contact area, but the lack of tire
pressure data makes it difficult to use in practice. In order to obtain
spatiotemporal information such as vehicle location and trajectory,
scholars have performed real-time information acquisition by vehicle
detection (using background subtraction or Gaussian mixture model
method) and tracking (using template matching, particle filtering
techniques, or Kalman filtering algorithms) [25–26]. However, the
sensitivity of detection algorithms to environmental conditions (e.g.,
lighting and shadows) makes the vehicle information acquisition
method less robust.

With the rapid development of deep learning techniques and the
availability of well-established detectors, vehicle detection has become
efficient and reliable, and some deep learning-based methods for
obtaining vehicle information have appeared in related reports. Zhang
et al. [27] proposed a method of getting spatiotemporal information of
vehicles on bridges based on the technology of DCNN and image cali-
bration method. However, the image calibration method requires stan-
dard vehicles for data acquisition and fitting, which undoubtedly
increases the complexity of system deployment. Zhou et al. [28] pro-
posed an identification method in which the vehicle was detected by
using a trained Faster R-CNN model and then tracked using the Kalman
filter method. Jian et al. [29] proposed a traffic sensing methodology
capable of automatically identifying the vehicle loads and speeds. Xia
et al. [30] proposed a traffic monitoring methodology for complicated
traffic scenarios. Although the coordinate transformation method makes
the mapping of information in images to 3D space simple and easy, it
introduces more computational errors as a result. Ge et al. [31] proposed
a monitoring method of full-bridge traffic load distribution based on
YOLO-v3 machine vision. In this report, the spatial information of the
vehicle is obtained using a dual-target detection model that can detect
the profile and the tail of vehicles and the vision principle. However, the
distance between the tail of the vehicle and the bridge deck in reality
will inevitably bring errors to the calculation of spatial information.
Meanwhile, the workload of image annotation has increased signifi-
cantly compared to single-target detection.

Although the WIM techniques can obtain some vehicle information,
its accuracy is not enough. Therefore, scholars have turned to computer
vision techniques to obtain spatiotemporal information about vehicles.
Since the traditional image recognition methods have high sensitivity to
environmental noise, it is difficult to cope with complex scenes with
multiple vehicles. To address this issue, deep learning techniques are
used for vehicle detection. Combining vehicle detection and tracking,
some methods for vehicle spatiotemporal information acquisition are
proposed in the latest reports. However, there are still some issues. The
image calibration method does not reflect the real situation in 3D space;
The coordinate transformation method is simple and easy, but at the cost
of loss of accuracy; The method based on dual-target detection cannot
correctly obtain the distance from the tail of the truck to the bridge deck.
The presence of these factors, together with the distant traffic cameras,
makes more inaccurate in the acquired vehicle spatiotemporal infor-
mation, which affects our assessment of the bridge condition and our
perception of its behavior. Therefore, we try to combine deep learning-
based vehicle detection, camera calibration, and reconstruction of
vehicle 3D bounding boxes to obtain the accurate vehicle spatiotem-
poral information. The innovation of this paper is the establishment of
the vehicle 3D bounding box reconstruction model and the derivation of
the algorithm equations, as well as the accurate vehicle load spatio-
temporal information thus obtained. This approach eliminates excessive
errors caused by assumptions and approximations, thus making the
obtained data more reliable and practical.

In this paper, we proposed an accurate approach for obtaining
spatiotemporal information of vehicle loads on bridges based on 3D
bounding box reconstruction with computer vision. The 2D bounding

box of the vehicle is first obtained using deep learning technology. Then
the 3D bounding box was reconstructed based on the reconstruction
model by constructing spatial mapping relationship and the vehicle sizes
and position were obtained. Finally, the vehicle spatiotemporal infor-
mation was obtained by using MOT. The rest of the paper consists of two
parts: The first part is a statement of principle and the second part is an
application of the approach. Section 2 explains the research framework
in detail. Section 3 shows the DCNN architecture and detector frame-
work, then explains the process of the dataset creation and gives the loss
function in the vehicle detection model. In Section 4, an approach for
reconstructing 3D bounding box of vehicles is proposed by constructing
spatial mapping relationship between 2D and 3D bounding box. In
Section 5, the tracking and spatiotemporal information of vehicles is
obtained using MOT. Section 6 gives an application of the proposed
approach and analyzes the error of the test results. Conclusions are given
in Section 7.

2. The framework

The framework contains 3 parts: The first part is detection and
classification of vehicles. Part two contains ‘Bridge-Vehicle-Camera’
system (BVCS) and the reconstruction model of vehicle 3D bounding
box. The last part is vehicle tracking. The details are shown in Fig. 1.

In part one, the images of vehicles are captured on urban bridges or
roads using cameras in a variety of different environments (e.g. different
lighting conditions). Then, the type and axis-aligned ground truth box of
vehicles are annotated, and the dataset is formed. Considering the speed
and accuracy in real-time detection, YOLO-v4, gradient descent algo-
rithm and hardware acceleration are used for the model training. When
the loss function drops rapidly and stabilizes, the weight and bias are
saved and the vehicle detector is obtained. Finally, the detector is used
to detect different types of vehicles, and the confidence score and 2D
bounding box are obtained.

In part two, a camera is installed on the side of the bridge deck, thus
forming the BVCS. Then, the camera is calibrated with two different
calibration boards. A small calibration board is used to obtain the ac-
curate intrinsic parameter matrix. The extrinsic parameter matrix is then
obtained using a large calibration board laid on the bridge deck. By
establishing the relationship between 2D and 3D bounding box, a model
for 3D bounding box reconstruction is proposed. Finally, the confidence
score and 3D bounding box are obtained.

In the last part, a region of interest (ROI) is set on the bridge deck
firstly. Then, the vehicle status matrix is formed during detecting. Ac-
cording to threshold value based on estimates and field tests, vehicle
tracking is achieved by traversing all vehicles in the previous frame to
get the distance between vehicles in two adjacent frames. Once a vehicle
enters the ROI, its trajectory, No. and the moment are recorded and the
status matrix is updated. The axle number is then determined based on
vehicle type, size and statistics. When the vehicle leaves the ROI, the
tracking is terminated and the information is written to a data file.

3. Vehicle detection

3.1. YOLO-v4 framework

As the vehicle travels at high speeds on the bridge, the real-time
detection capability is critical. Based on DCNN, several detectors have
been proposed for object detection, including two-stage (RCNN, SPPNet,
Fast RCNN, Faster RCNN) and one-stage (DetectorNet, OverFeat, YOLO
and SSD) detectors [32–35]. In comparison, the two-stage detectors are
computationally expensive for many devices with limited storage and
computational capability, the one-stage detector provides a good bal-
ance between efficiency and accuracy. Being one-stage detectors, both
SSD and YOLO have good detection performance. However, with the
improvement of algorithm, the latest version of YOLO detector [35] has
obvious advantages in accuracy and speed. Therefore, YOLO-v4 is used

J. Zhu et al.

Measurement 181 (2021) 109657

3

for vehicle detection.
As shown in Fig. 2, the framework of YOLO-v4 consists of 5 parts:

Input, backbone, neck, prediction and output. To achieve an optimal

balance in terms of the input network resolution, the convolutional layer
number and the parameter number, the CSPDarknet53 with 53 con-
volutional layers and 23 residual blocks is used as the backbone of the

Fig. 1. Framework of the proposed approach
(Note: Vehicle datasets is used for model
training in deep learning. Detector refers to
the data file containing the weights and
biases after the model is trained and the
program code used for vehicle detection.
When the detector reads in the vehicle
image, it extracts the feature map and plots
the detection results as shown in the graph
on the right. Based on vehicle detection,
camera calibration, etc., the reconstruction
model is proposed and used for the acquisi-
tion of vehicle size and spatial position. In
order to get information such as the speed
and trajectory of the vehicle, the vehicle
must be tracked.)

Fig. 2. YOLO-v4 framework (Note: The CSP refers to Cross-Stage-Partial strategy, and the number 8 after it means that the block contains 8 residual blocks. The Neck
contains 3 operation modules for further processing the feature maps output from CSPDarknet53 to obtain richer spatial information.)

J. Zhu et al.

Measurement 181 (2021) 109657

4

YOLO-v4. The CSPDarknet53 is the network formed by applying the
Cross-Stage-Partial (CSP) strategy to Darknet53, and its architecture are
listed in Table 1. When the image with 608 × 608 pixels is passed to
CSPDarknet53, feature maps at different scales are obtained. In order to
make the feature maps contain richer information and thus the frame-
work has better detection accuracy, two techniques are introduced into
it, one is spatial pyramid pooling (SPP) module and the other is path
aggregation network (PANet). The SPP module significantly increased
the receptive field and separates the most important contextual features
without slowing down the network operation. The PANet introduced a
short-cut path to make low-layer information easier to propagate to the
top and make fine-grain localized information available to top layers. In
the prediction stage, the multi-class classification and bounding box
regression are carried out on multiple scales. In order to measure the
distance between the prediction and the actual and to optimize the
weights, the value of the loss function needs to be calculated. The loss
function in YOLO-v4 consists of 3 parts: Bounding box regression loss,
classification loss, and confidence loss, whose expressions are as follows:

Loss = Lloc + Lcls +Lconf . (1)

In bounding box regression, the mean square error (MSE) method
used in the old version of YOLO is removed and replaced by the
complete-IoU (CIoU) algorithm. This is because the CIoU loss considers
several aspects of overlapping area, center-of-mass distance and aspect
ratio simultaneously, and thus better convergence speed and accuracy
can be obtained. After multi-class classification and bounding box
regression in the feature maps, the fast non-maximum suppression (Fast
NMS) method [30] is used to retain the local maximum value of confi-
dence score to obtain the final result.

3.2. Vehicle datasets

In general object detection, there are a number of well-known
datasets. However, the datasets of PASCAL VOC Challenges [36–37]
and ImageNet Large Scale Visual Recognition Challenge [38] include
only a few types of vehicles such as car, bus and truck. The MS-COCO
Detection Challenge dataset [39] and the KITTI dataset [40] contain
images of some large vehicles, but their appearance is quite different
from the appearance of the vehicles we want to detect. Therefore, the
vehicle images in these datasets cannot be directly used for training the
YOLO network, but instead, it is necessary to create custom vehicle
datasets with less bias.

Since the detection is performed by extracting the feature map, the
vehicle with similar physical characteristics can be grouped together.
Therefore, based on the investigation of vehicles passing on urban
bridges, the vehicle is classified into a total of nine types, which
including car, sport utility vehicle (SUV), light truck, pickup truck,
minibus, bus, heavy truck, tractor trailer and special vehicle. The pro-
cedure of creating datasets is as follows.

(1) To contain significant variability [36] in terms of object size,
orientation, pose, illumination, position and occlusion, the images of
vehicles are taken by using the camera, or by downloading from the
internet. With a limited datasets, the number of images per type vehicle
should not vary too much from each other in order to ensure the ability

to detect different types of vehicles.
(2) The random sampling method is used to divide the vehicle

dataset into two parts: One part is the training dataset, accounting for
80% of the whole data, which is used for the training of the vehicle
detector. The other part is the testing dataset, which accounts for 20% of
the whole data and is used to evaluate the capability and accuracy of the
detector.

(3) The images in datasets are annotated with two attributes: One is
category tags, including car, SUV, light truck, pickup truck, minibus,
bus, heavy truck, tractor trailer, and special vehicle. Another is an axis-
aligned ground truth box surrounding vehicles present in the image.
When there are multiple vehicles in the same image, ground truth boxes
are drawn and category tags are added to different vehicles to increase
the data samples. The classification and category tag of the dataset are
shown in Fig. 3.

(4) The image size, category tags, and the pixel coordinates of all
ground truth boxes are extracted and written to files. At the same time,
each label is encoded as an integer from 0 to 8 to represent the nine
different vehicle types.

To extend the training dataset, the feature adjustments and size
changes for images are used. New images are formed by adjusting the
brightness, contrast, saturation and hue of the image in vehicle dataset,
and flipping horizontally with a 50% chance and in random order. To
improve the ability to detect small targets (vehicles that occupy less
space in the image), the width and height of the original image are
multiplied by a randomly selected expansion ratio to calculate the size of
the canvas, and then the original image is placed into that canvas to form
a new image. Accordingly, by randomly cropping the target object in the
original image, a new image is formed to increase the sample number of
large or occluded targets.

3.3. Training of YOLO-v4

To obtain the vehicle detection model, the YOLO-v4 was trained
iteratively using the created dataset. The specific training process is as
follows:

(1) Select the appropriate batch size according to the computer
hardware, especially the graphics processing unit (GPU). Meanwhile, in
order to avoid getting into a local optimal solution, the appropriate
learning rate was chosen according to the literature [34].

(2) After setting the initial parameters, the iterative training of the
YOLO-v4 was started. To facilitate real-time evaluation of the detection
model during training, the training results of the parameters such as
weights and biases need to be saved at regular intervals.

(3) The final values of the YOLO-v4 parameters are obtained by
terminating the training when the loss function is no longer decreasing,
and will be used for image feature extraction and vehicle detection.

4. Vehicle 3D bounding box reconstruction

4.1. ‘Bridge-Vehicle-Camera’ system

To detect the vehicles on bridge decks, cameras need to be installed
on both sides of the bridge deck. The camera should be in a fixed posture
during operation. Meanwhile, the position and angle should be
reasonable to capture 3 surfaces of the vehicles. To facilitate camera
calibration, a flat area on the bridge deck is chosen as the target region
for the camera. Once the camera is installed, the bridge, the vehicle and
the camera form a BVCS as shown in Fig. 4. Four coordinate systems are
created in the BVCS and they are world coordinate system (WCS),
vehicle coordinate system (VCS), camera coordinate system (CCS) and
pixel coordinate system (PCS).

(1) WCS is created on half the bridge deck. The direction parallel to
the lane markings and consistent with travelling is defined as X , the
direction perpendicular to the X and pointing outward from half the
bridge deck is defined as Y. The Z is perpendicular to the bridge deck and

Table 1
Architecture of CSPDarknet53 (Note: BN refers to batch normalization. Mish
means mish activation function. ResBlock denotes the residual block).

Type Number Filters Output

Conv2D + BN + Mish 1 32 608 × 608
ResBlock 1 64 304 × 304
ResBlock 2 128 152 × 152
ResBlock 8 256 76 × 76
ResBlock 8 512 38 × 38
ResBlock 4 1024 19 × 19

J. Zhu et al.

Measurement 181 (2021) 109657

5

downwards. Once the WCS is created, the lane number of the vehicle can
be determined by the vehicle location coordinates, and the speed of the
vehicle can be obtained by tracking the vehicle.

(2) VCS is a local coordinate system that moves with the vehicle.
Each vehicle has a 3D bounding box that just encloses its body. To
represent the size of the vehicle and the coordinates of the 3D bounding
box vertexes, VCS is created. The origin of VCS is located at the midpoint
of the bottom of 3D bounding box. The direction of travelling is defined
as Xveh, and the direction perpendicular to Xveh and pointing to the
outside of the bridge deck is defined as Yveh. The Zveh is perpendicular to
the bridge deck and upwards. In most cases, X and Xveh are oriented in
the same direction. However, when a vehicle changes lane, a certain
angle between the two axes comes, which is denoted by θ.

(3) CCS is a coordinate system attached to the camera. Taking the
optical center of the camera as the origin and the two axes of the image
sensor as Xc and Yc. The direction of the lens is defined as Zc, which is
shown in Fig. 4. Once the camera is fixed, the translational and rota-
tional relationship between CCS and WCS is unique. Then the coordi-
nation of the 3D bounding box vertexes in WCS can be converted to the

coordinates in CCS.
(4) PCS is created on the image plane and its origin is located at one

corner of the image plane. The coordinates represent the number of rows
and columns of that pixel in the image. Once the vehicle is detected, the
3D bounding box can be drawn in the image by using pixel coordinates.

Given that the coordinates of the 3D bounding box vertexes in VCS
are[Xveh,Yveh,Zveh]

T, the coordinates of the middle point at the bottom of

3D bounding box in WCS are
[
px, py,0

]T
, the angle between Xveh and X is

θ. For each vertex of the 3D bounding box, its coordinates can be con-
verted from VCS to WCS using the following formula
⎡

⎣
X
Y
Z

⎤

⎦ =

⎡

⎣
px
py
0

⎤

⎦+

⎡

⎣
cosθ − sinθ 0
sinθ cosθ 0

0 0 1

⎤

⎦

⎡

⎣
Xvec
Yvec
Zvec

⎤

⎦ (2)

Since the positions of WCS and CCS are arbitrary, it can be assumed
that there is a translation matrix t3×1 and a rotation matrix R3×3 between
them. According to the pinhole camera model [41], the coordinate
transformation from WCS to CCS can be expressed as

Fig. 3. Classification and annotation of the vehicles in datasets: (a) car; (b) sport utility vehicle (SUV); (c) light truck; (d) pickup truck; (e) minibus; (f) bus; (g) heavy
truck; (h) tractor trailer; (i) special vehicle.

Fig. 4. ‘Bridge-Vehicle-Camera’ system (Note: In addition to the world coordinate system (WCS), the system also includes two local coordinate systems, vehicle
coordinate system (VCS) and camera coordinate system (CCS). The 3D bounding box refers to the cuboid that wraps tightly around the body of the vehicle.)

J. Zhu et al.

Measurement 181 (2021) 109657

6

s

⎡

⎣
u
v
1

⎤

⎦ = K3×3[R3×3 t3×1]

⎡

⎢
⎣

X
Y
Z
1

⎤

⎥
⎦ = P

⎡

⎢
⎣

X
Y
Z
1

⎤

⎥
⎦, (3)

where s is an arbitrary scale factor, P is the projection transformation
matrix, [R t] is the camera extrinsic parameter matrix, and the camera
intrinsic matrix K is given by

K =

⎡

⎣
α γ u0
0 β v0
0 0 1

⎤

⎦

(u0, v0) is the coordinates of the principal point, α and β are the scale
factors on the u and v axes of the image respectively, and γ is the
parameter describing the skewness of the two axes.

When a camera is installed on a bridge deck, its posture relative to
the bridge deck is unique. In order to obtain the matrix P, the camera
needs to be calibrated. Among several camera calibration methods, the
representative ones are Tsai [42], Heikkila [43] and Zhang’s [44]
methods. However, the first two methods require accurate 3D mea-
surement data and are sensitive to measurement errors. For Zhang’s
methods, the sensitivity to noise can be reduced by increasing the
number of corner points on the calibration board, and no laborious
measuring task is required [45]. Therefore, the flexibility provides a
great convenience for the calibration of the camera on the bridge. The
calibration process consists of the following two steps:

(1) Calibration in the room: Take 13 images of the small calibration
board at different distances and angles, and then use them for camera
calibration. The calibration results include intrinsic and extrinsic
parameter matrix of the camera. For a given camera, the intrinsic
parameter matrix reflects its inherent characteristics and can be saved
for the secondary calibration of the camera.

(2) Calibration on the bridge deck: A large calibration board is laid
flat on the middle lane of half the bridge deck with its edge next to the
lane markings. After taking an image of the large calibration board and
getting the pixel coordinates of each grid corner in the image, the
camera is calibrated for the second time.

Once the calibration of the camera is complete, the matrix P is ob-
tained, and the WCS is also created on the bridge deck. Calibration on
the bridge deck may have some impact on traffic flow, so it is appro-
priate to choose a moment that the traffic flow is low, such as the early
hours of the morning.

4.2. Reconstruction model

With the development of deep learning techniques, scholars have
proposed various methods to perform depth estimation of 3D objects
[46]. Unfortunately, these methods require labeled 3D training datasets.
For a camera fixed to a bridge, such 3D data is very difficult to obtain.
Therefore, inspired by these methods, we propose a 3D reconstruction
model based on 2D bounding box and the statistical characteristics of
vehicle sizes. In Section 3, the 2D bounding box of the vehicle can be
obtained during detecting. When the 3 surfaces of the vehicle are visible
in the camera lens, the 3D bounding box can be projected into image
based on Eq. (2), Eq. (3), and the projection transformation matrix P.
After the two boxes are drawn in the same image and PCS is added, the
relationship between them is shown in Fig. 5, which includes 2D
bounding box, 3D bounding box, VCS (OvecXvecYvecZvec), WCS (OXYZ),
PCS (ouv), and the position (uL, uR,vT ,vB) of the vehicle in the image. The
angle between the direction of travelling and the lane markings at a
certain time is θ. The parameters vector of the vehicle is
[
px, py, θ, l,w, h

]T
, where (l,w, h) denotes half-length, half-width and

height of the vehicle respectively. It can be seen from Fig. 5 that 4
points(A,B,C,D) on the 3D bounding box are on the edge of the 2D
bounding box. According to section 4.1, the coordinates of the 4 points
in WCS are obtained by Eq. (2) and they can be written as homogeneous
coordinate(X*,Y*,Z*, 1), where * = A,B,C or D. Then Eq. (3) is used to
project the 4 points into the PCS. As shown in Fig. 5, the y coordinates
components of A and C after being projected are equal to the pixel co-
ordinates in the v direction of the lower and upper edges of the 2D
bounding box in the image, respectively. Similarly, the x coordinates
components of B and D after being projected are equal to the pixel co-
ordinates in the u direction of the right and the left edge of the 2D
boundary box in the image, respectively. So, the constraint equations are
obtained as follows

uL =

⎛

⎜
⎝P

⎡

⎢
⎣

XD
YD
ZD
1

⎤

⎥
⎦

⎞

⎟
⎠

x

/

⎛

⎜
⎝P

⎡

⎢
⎣

XD
YD
ZD
1

⎤

⎥
⎦

⎞

⎟
⎠

z

uR =

⎛

⎜
⎝P

⎡

⎢
⎣

XB
YB
ZB
1

⎤

⎥
⎦

⎞

⎟
⎠

x

/

⎛

⎜
⎝P

⎡

⎢
⎣

XB
YB
ZB
1

⎤

⎥
⎦

⎞

⎟
⎠

z

vT =

⎛

⎜
⎝P

⎡

⎢
⎣

XC
YC
ZC
1

⎤

⎥
⎦

⎞

⎟
⎠

y

/

⎛

⎜
⎝P

⎡

⎢
⎣

XC
YC
ZC
1

⎤

⎥
⎦

⎞

⎟
⎠

z

vB =

⎛

⎜
⎝P

⎡

⎢
⎣

XA
YA
ZA
1

⎤

⎥
⎦

⎞

⎟
⎠

y

/

⎛

⎜
⎝P

⎡

⎢
⎣

XA
YA
ZA
1

⎤

⎥
⎦

⎞

⎟
⎠

z

(4)

Fig. 5. Reconstruction model for vehicle 3D bounding box (Note: The 2D bounding box is the result of the vehicle detection, and ‘point’ is one of the vertices on the
3D bounding box. (uL, uR, vT , vB) refers to the pixel coordinates of the four edges of the 2D bounding box of the vehicle in the image. θ is the angle between the
direction of travelling and the lane markings. (l,w, h) denotes half-length, half-width and height of the vehicle.)

J. Zhu et al.

Measurement 181 (2021) 109657

7

where ()x, ()y and ()z refer to the x , y and z coordinate components
respectively after the projection.

When a vehicle is moving, the angle θ between the direction of
travelling and the lane markings is approximately zero in most cases,
except that when the vehicle is changing lanes. As a result, the param-

eters vector of the vehicle becomes
[
px, py, l,w, h

]T
.

For convenience, the elements of the matrix P are written as

P =

⎡

⎣
a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34

⎤

⎦ (5)

Combining Eq. (4) and Eq. (5) and substituting the coordinates of the
4 points (A, B, C and D) into Eq. (4), the following set of equations are
obtained:

[a21 a22 a23 a24]

⎡

⎢
⎢
⎣

px + l
py + w

0
1

⎤

⎥
⎥
⎦ = vB[a31 a32 a33 a34]

⎡

⎢
⎢
⎣

px + l
py + w

0
1

⎤

⎥
⎥
⎦

[a11 a12 a13 a14]

⎡

⎢
⎢
⎣

px + l
py − w
− h
1

⎤

⎥
⎥
⎦ = uR[a31 a32 a33 a34]

⎡

⎢
⎢
⎣

px + l
py − w
− h
1

⎤

⎥
⎥
⎦

(6)

[a21 a22 a23 a24]

⎡

⎢
⎢
⎣

px − l
py − w
− h
1

⎤

⎥
⎥
⎦ = vT [a31 a32 a33 a34]

⎡

⎢
⎢
⎣

px − l
py − w
− h
1

⎤

⎥
⎥
⎦

[a11 a12 a13 a14]

⎡

⎢
⎢
⎣

px − l
py + w
− h
1

⎤

⎥
⎥
⎦ = uL[a31 a32 a33 a34]

⎡

⎢
⎢
⎣

px − l
py + w
− h
1

⎤

⎥
⎥
⎦

After some arranging, a set of equations about the vehicle parameters
is obtained as

f
⎡

⎢
⎢
⎣

a21 − vBa31 a22 − vBa32 a21 − vBa31 a22 − vBa32 0
a11 − uRa31 a12 − uRa32 a11 − uRa31 − a12 +uRa32 − a13 +uRa33
a21 − vT a31 a22 − vT a32 − a21 +vT a31 − a22 + vT a32 − a23 + vT a33
a11 − uLa31 a12 − uLa32 − a11 +uLa31 a12 − uLa32 − a13 +uLa33

⎤

⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎣

px
py
l
w
h

⎤

⎥
⎥
⎥
⎦

=

⎡

⎢
⎣

vBa34 − a24
uRa34 − a14
vT a34 − a24
uLa34 − a14

⎤

⎥
⎦

Obviously, the number of unknowns is greater than the number of
equations, so the vehicle parameters cannot be obtained. In order to add
constraints to that set of equations, about 3600 vehicle samples are
obtained from two automotive websites in China. The statistics and
analysis of vehicle sizes revealed that the length of the same type of
vehicles varied considerably, but the aspect ratio r (height/width) varies
very little. The same type of vehicles is picked from the overall sample,
and their aspect ratios were plotted in Fig. 6. For easy to use, the aspect
ratio of different types of vehicles are listed in Table 2. Based on the
aspect ratio listed in Table 2, a constraint on the ratio of the height and
the width is added to Eq. (7), and then the vehicle parameters can be
obtained by using the following equations
⎡

⎢
⎢
⎢
⎢
⎣

a21 − vBa31 a22 − vBa32 a21 − vBa31 a22 − vBa32 0
a11 − uRa31 a12 − uRa32 a11 − uRa31 − a12 +uRa32 − a13 +uRa33
a21 − vT a31 a22 − vT a32 − a21 +vT a31 − a22 + vT a32 − a23 + vT a33
a11 − uLa31 a12 − uLa32 − a11 +uLa31 a12 − uLa32 − a13 +uLa33

0 0 0 − r 1

⎤

⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎣

px
py
l
w
h

⎤

⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎣

vBa34 − a24
uRa34 − a14
vT a34 − a24
uLa34 − a14

0

⎤

⎥
⎥
⎥
⎦

5. Vehicle tracking

Depending on how objects are initialized, Multiple object tracking
(MOT) can be grouped into two sets: Detection-based tracking (DBT)
and detection-free tracking (DFT) [47]. In section 4, the 2D bounding

Fig. 6. Aspect ratios of different types of vehicles (Note: The horizontal axis represents the number of samples of vehicles.)

J. Zhu et al.

Measurement 181 (2021) 109657

8

box of the vehicle have been detected, so DBT is used.
From Section 4, it is clear that if the vehicle is not yet fully in the

camera lens, the calculation results in incorrect information. Therefore,
a ROI is created on the bridge deck. Since then, the vehicle tracking only
appears in the ROI, which is shown in Fig. 7. Suppose two adjacent
frames are denoted as i and j respectively and there are m vehicles in the
i-th frame. In the j-th frame, l vehicles have left the ROI, while n vehicles
have entered the ROI. Thus, the state matrix composed of vehicle posi-
tions in the two frames are

Pi =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

V1
xi

V1
yi

V2
xi

V2
yi

⋮

Vm
xi

⋮

Vm
yi

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,Pj =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Vl+1
xj

Vl+1
yj

⋮

Vm
xj

⋮

Vm+n
xj

⋮

Vm
yj

⋮

Vm+n
yj

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(l < m)

The vehicle positions in the two frames are then traversed to calcu-
late the Euclidean distance between the two vehicles as follows

disi,j =

̅̅
(

VM
xi
− VN

xj

)2
+
(

VM
yi
− VN

yj

)2
√

(M = 1, 2,⋯,m;N = l+ 1,⋯,m,⋯,m+ n), (9)

where M and N represent the vehicle in frame i and j respectively. When
the distance is less than the threshold δ, it is considered to be the same
vehicle. The expression used to estimate δ is

0.278
v

lp∙fr
< δ <

d
lp
, (10)

where v is the maximum speed limits in km/h, lp is the side length of the
square grid in the large calibration board, its unit is in meters. fr is the
frame rate in fps. d is the minimum distance in meters between the two
adjacent vehicles in the same lane. However, it is often a random
number when vehicles are travelling. Therefore, δ need to be validated
on-site. Although the YOLO detector has reliable detection performance,
there is a probability of detection failure, which can cause interruptions
in vehicle tracking. To address this problem, we predict the tracking
bounding box in the current frame based on the 2D bounding box and
the vehicle travel speed in the previous frame, and then use the inter-
section over union (IoU) between the 2D bounding box and the tracking
bounding box to ensure that the vehicle is successfully tracked.

When a vehicle is being tracked, its information matrix Minfoj
including No., type, time, position coordinates (x,y), sizes (l,w,h), lane
number, instantaneous speed and number of axles need to be handled
with different functions as shown in Fig. 7. Of all the information, the
number of axles can be obtained from Table 3. The pseudo-code of the
key parts of the vehicle tracking algorithm is listed in Table 4.

Table 2
Aspect ratios of different types of vehicles.

Type Car SUV Light truck Pickup truck Minibus Bus Heavy truck Tractor trailer Special vehicle

Aspect ratios 0.822 0.913 1.367 0.976 1.171 1.303 1.308 1.405 1.561

Fig. 7. Vehicle tracking algorithm (Note: Vehicle tracking is based on vehicle detection. The status and information of successfully tracked vehicles will be added or
updated to the matrix, while the status and information of vehicles that drive away from the ROI will be deleted.)

J. Zhu et al.

Measurement 181 (2021) 109657

9

Minfoj =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

VN
No VN

Type VN
Time

VN
xj

VN
yj

VN
zj

VN
lj

VN
Lane

VN
wj

VN
Speedj

VN
hj

VN
Axis

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(N = l + 1,⋯,m,⋯,m + n)

6. Application of the proposed approach

To verify the accuracy and reliability of the proposed approach, the
BVLIS was developed and tested on the Silver Beach Yellow River Bridge
in Lanzhou, China. As shown in Fig. 8a, it is a cable-stayed bridge with
single-tower and double cable planes, which has a span of 2 × 133 m and
a tower height of 79 m. Fig. 8b shows that the main bridge has a deck
width of 25.5 m and 3 lanes within half the deck. The first two lanes are
motorways with widths of 3 m and 3.6 m respectively, and the third lane
is a mixed carriageway with a width of 2.7 m.

6.1. Detector training and testing

Six thousand images of vehicles were taken on urban bridges and
roads by using the camera under different times and locations. Of all the
images, the percentages of car, SUV, light truck, pickup truck, minibus,
bus, heavy truck, tractor trailer, and special vehicle are 21.85%,
15.48%, 9.18%, 8.26%, 10.26%, 14.87%, 6.84%, 6.35% and 6.91%
respectively. The images were annotated with two attributes and
divided into training and testing groups using a random sampling
method. On the basis of the detector building and the parameters (the
initial learning rate of 0.001 and a batch size of 16 images), 200,000
training sessions were performed on a computer with GPU (GeForce GTX
1080 Ti), CPU (Intel Core i7-8700K @ 3.7 GHz) and software environ-
ment (Python 3.7 and PyTorch 1.7). During the training process, the
total loss function decreased sharply from the beginning to stabilize at
the later stage as shown in Fig. 9a, and the precision-recall curves of nine
vehicle types on testing dataset are shown in Fig. 9b. As can be seen from
the Fig. 9b, the model has good detection capability. Meanwhile, the
average precision (AP) for each type of vehicles was obtained and listed
in Table 5.

6.2. Camera calibration

To detect the vehicle in two different directions on the bridge deck,
two cameras with a resolution of 2560 × 1440 and a frame rate of 30 fps
were installed on both sides of the bridge deck at the end of the main
bridge as shown in Fig. 8a. The two cameras worked in the same way, so
the subsequent content was for the first camera only. According to
several sets of tests on the bridge deck, it was found that when the
camera was located at a height of 3.8 m, all three surfaces (top, front,

Table 3
The number of axles according to the length of the heavy truck and tractor trailer
[27].

The length of the vehicle
(m)

≤ 9 9 ~
10.5

10.5 ~
13

13 ~
14.5

≥ 14.5

The number of axles 2 3 4 5 6

Table 4
The pseudocode for the vehicle tracking.

J. Zhu et al.

Measurement 181 (2021) 109657

10

and right) of the vehicle in the field of view had better visibility, thus
facilitating the reconstruction of the 3D surround box.

To get the camera posture relative to the bridge deck, the calibration
was required twice in total. Thirteen images of the small calibration
board were taken and imported into the system, the intrinsic parameter
matrix was calculated and saved as an Excel file. For checking the
calibration results, the first point gathered from the board was used as
the origin of a coordinate system, and the row and column on the board
as X and Y of WCS respectively, the coordinate system was shown in
Fig. 10a. In the second calibration, a floor leather of dimension 3 × 2 m
with a black and white square (the side length is 27.5 mm) was selected
as the large calibration board and laid on lane 2 with one side imme-
diately adjacent to the lane markings. The bridge deck and the large
calibration board were shown in Fig. 10b and 10c respectively. An image

of the board was taken with the camera, the pixel coordinates of each
grid corner were gathered from the image and saved as a data file. By
importing the image and the data file together into the BVLIS, the pro-
jection matrix was obtained and the WCS was created on the bridge deck
as shown in Fig. 10d.

To check the accuracy of the second calibration, the projection of the
grid corners was drawn on the image using small yellow circles. As can
be seen from Fig. 10d, there is an accurate match between the projection
and the original position. The deviation of the projection of grid corners
from the original position was calculated and plotted in Fig. 10e. The
result shows the maximum error is no more than 1% relative to the
image size.

Fig. 8. The Silver Beach Yellow River Bridge (cm): (a) front view of the Silver Beach Yellow River Bridge; (b) cross-sectional view of main beam.

Fig. 9. Detector training and testing: (a) curve of the loss function; (b) precision-recall curves.

Table 5
APs of nine types of the vehicle on the testing dataset.

Type Car SUV Light truck Pickup truck Minibus Bus Heavy truck Tractor trailer Special vehicle

AP (%) 89.5 82.0 77.3 76.6 81.6 90.7 96.1 85.4 92.7

J. Zhu et al.

Measurement 181 (2021) 109657

11

6.3. Vehicle spatiotemporal information acquisition

Based on the camera position, location of the WCS, and the width of
the lanes shown in Fig. 8b, the ROI was set as x∈[− 10,13] and y∈
[− 15,15] (no unit data). The speed limit on the bridge is 60 km/h, the
frame rate of the camera is 30 fps. Since the vehicle traveled at a faster
speed and with larger spacing, the threshold δ was set to 3.5 in term of
Eq. (10).

When the identification began, the type and confidence score of the
vehicle in each frame were detected firstly, then the position coordinates
in WCS and size were obtained by using the reconstruction model. The
3D bounding box and confidence score of the detected vehicle were

drawn and shown in Fig. 11. For the better visibility, the 3D bounding
boxes of different types of vehicles were represented in different colors.
As soon as a part of the vehicle body was detected, the system calculates
the position and size of the vehicle accordingly. However, when the
vehicle was not fully visible in the camera lens, the calculations were
unreliable.

When the vehicle was being tracked, the lane number of the vehicle
was obtained by judging the relationship between the location of the
vehicle and the lane markings on the bridge deck, the vehicle axle
number was determined according to vehicle type and length as listed in
Table 3. Once the identification and tracking of the vehicle were
completed, the trajectory, instantaneous speed, average speed and the

Fig. 10. Camera calibration: (a) images of the small calibration board used for the first calibration of the camera; (b) a cable-stayed bridge in operation; (c) large
calibration board for the second calibration of the camera; (d) WCS was created on the bridge deck after the camera calibration; (e) the deviation in the second
calibration.

J. Zhu et al.

Measurement 181 (2021) 109657

12

moment were obtained. Assuming the vehicle was traveling at the
average speed over the entire bridge deck and maintaining in the same
lane, the vehicle spatiotemporal information was obtained. Since the
detector have a certain probability of failure, erroneous results or missed

detections can cause inconsistent between the tracking data and the
actual situation. Similarly, when the position of the vehicle being
detected has shifted, there was an error in the calculation of the size and
speed.

Fig. 11. Reconstruction of vehicle 3D bounding box: (a) Wuling Hongguang (minibus); (b) Chevrolet Cruze (car); (c) Mitsubishi Outlander (SUV); (d) Urban
bus (bus).

Fig. 12. Kernel density of the vehicle length: (a) Wuling Hongguang (minibus); (b) Chevrolet Cruze (car); (c) Mitsubishi Outlander (SUV); (d) Urban bus (bus). (Note:
The horizontal coordinate represents the video frame number used in the calculation.)

J. Zhu et al.

Measurement 181 (2021) 109657

13

6.4. Error analysis

After identifying and tracking the different 4 vehicles (Wuling hon-
gguang, Mitsubishi outlander, Chevrolet cruze, and urban bus. The
lengths of them are 4.5 m, 4.705 m, 4.598 m, and 11.53 m respectively.)
in four videos, kernel density maps of the vehicle length were drawn as
shown in Fig. 12. The diagrams show that the calculated length of the
same vehicle appearing in successive frames is not fixed but approaches
the actual value with great probability. When the number of detected
frames reaches 10 or more, the average of the calculated length is very
close to the actual size. The same is true for the width and height of the
vehicle, which are not listed here due to space limitation. Fig. 13 shows
the trajectory of the four vehicles. X and Y are the two axes in WCS on
the bridge deck. It can be seen from the diagram that the vehicle did not
change lanes while travelling, and the trajectory and the lane markings
are in an approximately parallel relationship. This is consistent with the
actual situation. By calculating the position of the vehicle frame by
frame, the instantaneous and average speed of the four vehicles were
calculated based on the frame rate of the camera as shown in Fig. 14. As
can be seen from the graph, there is a wide range of variations in the
instantaneous speed of the vehicle. When the continuously calculated
instantaneous speed is averaged, the variation of the average speed
gradually stabilizes and approaching the actual speed. In order to
compare the average speed with the actual speed, a timer was used to
obtain the actual speed of vehicles, which was indicated by a solid green
line in Fig. 14. When the tracking is complete, the error between the
average speed and the actual speed is no more than 6%.

The top five type of vehicles make up the vast majority of the total
number of vehicles on urban bridges. Four videos were shot randomly
for each type of vehicles in different lanes (1 and 2) and at different
travelling speeds (fast and slow). After calculating the 20 sets of videos
and statistically analyzing the results, the average errors in vehicle size
and speed were listed in Table 6. There is some deviation of the detec-
tion result relative to the real position of the vehicle during the vehicle
detection, it will bring errors to the calculation of the vehicle parame-
ters. The error is small-scale relative to the displacement generated by
the vehicle in a certain time period, but it appears larger relative to the
vehicle size. Therefore, the result shows that the calculation of speed is
more accurate than that of sizes.

Through calculation and analysis, it can be seen that the spatio-
temporal information of moving vehicles on the bridge can be obtained
in real time. However, errors in the vehicle detection, camera calibration
and the constraint equation led to certain deviations between the

calculated and actual results. This requires improvement of the algo-
rithm in future research to improve the computational accuracy.

6.5. Comparison with related works

The most recent related studies are listed in Table 7. As can be seen
from the table, DCNN is used for all methods of obtaining vehicle load
information based on computer vision techniques. In order to calculate
and extract vehicle information frame by frame, the efficiency and ac-
curacy of the detector is critical. The latest research shows that the one-
stage detector has obvious advantages, and YOLO-v4 is a significant
improvement over the previous version of YOLO-v3 [35]. In our ex-
periments, the inference time of one frame can reach 0.016 s, which fully
meets the requirements of real-time detection.

In terms of algorithm implementation, there are also significant
differences. In the image calibration algorithm [27], data collection was
performed using standard vehicles, and then the vehicle size is obtained
based on fitting and interpolation of the data. Since all vehicles are
divided into a total of three granularities for calibration: large, medium
and small, the results are subject to significant deviations. In addition,
image calibration was required before deployment on each bridge,
which undoubtedly increased the cost of the system significantly. In the
approach based on reference line [30], the authors use two lines on the
bridge deck as a reference to map the information in the image to 3D
space, from which the position of the vehicle is obtained. However, they
argue that the method is simple, but at the expense of accuracy. In a
latest report [31], the authors use a dual-target detection model to
achieve estimation of vehicle size and position based on body and tail
detection. The method has been proved to be feasible through field
testing. However, the distance between the vehicle tail and the road, as
well as the difficulty of detecting the tail of the vehicle, can causes errors
in calculation. In addition, the detection of the tail of the vehicle makes
the annotation of the data used for detector training increase exponen-
tially. The last two studies listed in Table 7 both try to obtain the 3D
dimensions of the vehicle through spatial mapping. However, our al-
gorithm requires only the direct solution of the system of equations
without any inter-frame iterative computation.

In addition to the above, the results are analyzed and discussed in
these reports. After image calibration and video calculations, the
resulting vehicle speed and truck length are plotted in graphs [27]. It is
estimated from the graphs that the error in the truck length is about 6%
(No detailed data for reference), and approximately 6% of vehicles have
an error of greater than 6% in their travel speed. In other reports

Fig. 13. Trajectory of vehicles: (a) Wuling Hongguang (minibus); (b) Chevrolet Cruze (car); (c) Mitsubishi Outlander (SUV); (d) Urban bus (bus). (Note: Taking WCS
on the bridge deck as the reference coordinate system.)

J. Zhu et al.

Measurement 181 (2021) 109657

14

[28,30], only some graphs of the calculation results are given, and no
more detailed data are listed. More detailed data are given in a report
[31], where the maximum average error of length and width are 18.16%
and 23.09% respectively. As can be seen from the figures, the transverse
position of the vehicle within 10 frames showed a large fluctuation, so
the trajectory also showed a large deviation relative to the actual tra-
jectory. As a comparison, the maximum average errors of the vehicle
length and width obtained with our approach are 9.9% and 8.78%,
respectively. Also, the vehicle trajectory is closer to the actual trajectory
in a very short period of time.

Objectively evaluating the differences between these algorithms is
challenging due to factors such as camera performance (Parameters and
distortion), mounting location, working environment, and program
code. However, by comparing the detector, the algorithm implementa-
tion and the existing data, our algorithm is closer to reality and therefore
achieves better accuracy.

7. Conclusions

An approach for obtaining the spatiotemporal information of vehicle
loads based on 3D bounding box reconstruction with computer vision is
proposed. Based on the creation of vehicle datasets, training of vehicle
detector, and calibration of the camera, the reconstruction model of the
vehicle 3D bounding box is proposed and the algorithm equations are
derived. Meanwhile, the BVLIS with GUI was developed and tested on a
bridge to verify the reliability of the approach. The main conclusions are
as follows:

(1) In this paper, the vehicle detection and projection matrix are
obtained based on YOLO-v4 and camera calibration. Then the
projection relationship between 2D and 3D bounding box is
investigated and a 3D bounding box reconstruction algorithm for
vehicle 3D is proposed. In contrast, our approach is closer to the
actual because some assumptions and approximations that exis-
ted in the previous works are eliminated.

(2) Field tests have shown that the 3D bounding box of the vehicle
can be reconstructed efficiently and accurately using the
approach to obtain the size and spatial location of the vehicle.
Then, based on the vehicle tracking, the spatiotemporal infor-
mation of the vehicle is obtained.

(3) One linear system of equations needs to be solved to obtain the
size and location of the vehicle, so the algorithm is

Fig. 14. Speed of vehicles: (a) Wuling Hongguang (minibus); (b) Chevrolet Cruze (car); (c) Mitsubishi Outlander (SUV); (d) Urban bus (bus). (Note: The instan-
taneous speed is calculated from the displacement and time generated by the vehicle between two adjacent video frames.)

Table 6
Average error in size and speed.

Type Length (%) Width (%) Height (%) Speed (%)

Minibus 2.28 8.78 3.61 5.83
SUV 6.00 2.54 3.92 2.54
Car 6.72 5.99 2.58 5.73
Bus 9.90 3.58 3.93 4.12
Light truck 3.65 4.21 7.23 3.56

Table 7
Relate works.

Related works Detector Algorithm implementation vehicle information

Size Position Trajectory Speed

[27] Faster R-CNN Image calibration √ √
[28] Faster R-CNN Detection based on DCNN √
[30] Mask R-CNN Reference line √
[31] YOLO-v3 dual-target vehicle detection model √ √ √
Ours YOLO-v4 3D bounding box reconstruction model √ √ √ √

J. Zhu et al.

Measurement 181 (2021) 109657

15

computationally compact and can be fully used for real-time
identification of vehicle loads on bridge decks. Since only one
calibration on the bridge deck is required, the system is easy to
deploy and has little impact on traffic flow.

In the future, we will explore the identification methods of vehicle
axle number and wheelbase, as well as the fusion of data from multiple
cameras on the full bridge deck, to further obtain more accurate and
comprehensive spatiotemporal information of vehicle loads through
algorithm improvement and vehicle re-identification.

CRediT authorship contribution statement

Jinsong Zhu: Conceptualization, Methodology. Xingtian Li: Pro-
gramming, Writing. Chi Zhang: Data curation, Validation. Teng Shi:
Writing - review & editing.

Declaration of Competing Interest

The author declare that there is no conflict of interest.

Acknowledgements

This work presented here is financially supported by the National
Key R&D Program of China (2018YFB1600300 and 2018YFB1600301),
the National Natural Science Foundation of China (51578370) and the
Tianjin Transportation Science and Technology Development Plan
Project (G2018-29). Any opinions, findings and conclusions or recom-
mendations expressed in this paper are those of the authors and do not
necessarily reflect those of the sponsor.

References

[1] J. Richardson, S. Jones, A. Brown, E.J. O’Brien, D. Hajializadeh, On the use of
bridge weigh-in-motion for overweight truck enforcement, Int. J. Heavy Veh. Syst.
21 (2) (2014) 83–104.

[2] J. Trott, J. Grainger, Design of a dynamic weighbridge for recording vehicle wheel
loads. Road research laboratory report. Volume 219. Ministry of Tansport. London,
1968.

[3] Lee, C. E. (1966). A portable electronic scale for weighing vehicles in motion.
Highway Research Record, (127).

[4] R.B. Machemehl, C.E. Lee, C.M. Walton, Acquiring traffic data by in-motion
weighing, Transport. Eng. J. ASCE 101 (4) (1975) 681–689.

[5] F. Moses, Weigh-in-motion system using instrumented bridges, J. Transport. Eng.-
ASCE 105 (3) (1979) 233–249.

[6] R.J. Peters, AXWAY – a system to obtain vehicle axle weights, Australian Road Res.
12 (2) (1984).

[7] B.A. Jacob, E.J. O’Brien, WAVE - a European research project on weigh-in-motion.
National Traffic Data Acquisition Conference (NATDAC ’96): Proceedings, 1996.
Vol. 2.

[8] E.J. O’Brien, B. Jacob, European specification on vehicle weigh-in-motion of road
vehicles, in: Proceedings of the 2nd European Conference on Weigh-in-Motion of
Road Vehicles, 1998, 171–183.

[9] D. Cebon, Assessment of the dynamic wheel forces generated by heavy road
vehicles, In: Symposium on Heavy Vehicle Suspension Characteristics, 1987,
Canberra, Australia, 1988.

[10] C. O’Connor, T.H.T. Chan, Dynamic wheel loads from bridge strains, J. Struct. Eng.
114 (8) (1988) 1703–1723.

[11] T.H. Chan, S.S. Law, T.H. Yung, X.R. Yuan, An interpretive method for moving
force identification, J. Sound Vib. 219 (3) (1999) 503–524.

[12] S.S. Law, T.H. Chan, Q.H. Zeng, Moving force identification: a time domain
method, J. Sound Vib. 201 (1) (1997) 1–22.

[13] S.S. Law, T.H.T. Chan, Q.H. Zeng, Moving force identification - a frequency and
time domains analysis, J. Dyn. Syst. Measur. Control-Trans. ASME 121 (3) (1999)
394–401.

[14] Z. Zhao, N. Uddin, E. Obrien, Field verification of a filtered measured moment
strain approach to the bridge weigh-in-motion algorithm, International Conference
on Weigh-in-motion (2012).

[15] L. Zhang, G. Wu, H. Li, S. Chen, Synchronous identification of damage and vehicle
load on simply supported bridges based on long-gauge fiber bragg grating sensors,
J. Perform. Constr. Facil 34 (1) (2020) 04019097.

[16] S.Z. Chen, G. Wu, D.C. Feng, L. Zhang, Development of a bridge weigh-in-motion
system based on long-gauge fiber bragg grating sensors, J. Bridge Eng. 23 (9)
(2018) 04018063.

[17] C.P. Chou, C.Y. Wang, Identification of equivalent traffic load on bridge using
optical fiber strain sensors, Int. Conf. Heavy Vehicles HVParis 2008 (2013)
475–484.

[18] M. Lydon, S.E. Taylor, D. Robinson, P. Callender, C. Doherty, S.K. Grattan, E.
J. O’Brien, Development of a bridge weigh-in-motion sensor: performance
comparison using fiber optic and electric resistance strain sensor systems, IEEE
Sens. J. 14 (12) (2014) 4284–4296.

[19] T. Khuc, T.A. Nguyen, H. Dao, F.N. Catbas, Swaying displacement measurement for
structural monitoring using computer vision and an unmanned aerial vehicle,
Measurement 159 (2020), 107769.

[20] X.W. Ye, T. Jin, C.B. Yun, A review on deep learning-based structural health
monitoring of civil infrastructures, Smart Struct. Syst. 24 (5) (2019) 567–585.

[21] G. Chen, Q. Liang, W. Zhong, X. Gao, F. Cui, Homography-based measurement of
bridge vibration using UAV and DIC method, Measurement 170 (2021), 108683.

[22] D. Dan, Q. Dan, Automatic recognition of surface cracks in bridges based on 2D-
APES and mobile machine vision, Measurement 168 (2021), 108429.

[23] T. Ojio, C.H. Carey, E.J. OBrien, C. Doherty, S.E. Taylor, Contactless bridge weigh-
in-motion, J. Bridge Eng. 21 (7) (2016) 04016032.

[24] M.Q. Feng, R.Y. Leung, C.M. Eckersley, Non-contact vehicle weigh-in-motion using
computer vision, Measurement 153 (2020), 107415.

[25] Z. Chen, H. Li, Y. Bao, N. Li, Y. Jin, Identification of spatio-temporal distribution of
vehicle loads on long-span bridges using computer vision technology, Struct.
Control Health Monit. 23 (3) (2016) 517–534.

[26] D. Dan, L. Ge, X. Yan, Identification of moving loads based on the information
fusion of weigh-in-motion system and multiple camera machine vision,
Measurement 144 (2019) 155–166.

[27] B. Zhang, L. Zhou, J. Zhang, A methodology for obtaining spatiotemporal
information of the vehicles on bridges based on computer vision, Comput.-Aided
Civ. Infrastruct. Eng. 34 (6) (2019) 471–487.

[28] Y. Zhou, Y. Pei, Z. Li, L. Fang, Y. Zhao, W. Yi, Vehicle weight identification system
for spatiotemporal load distribution on bridges based on non-contact machine
vision technology and deep learning algorithms, Measurement 159 (2020),
107801.

[29] X. Jian, Y. Xia, J.A. Lozano-Galant, L. Sun, Traffic sensing methodology combining
influence line theory and computer vision techniques for girder bridges, J. Sens.
2019 (2019) 1–15.

[30] Y. Xia, X. Jian, B. Yan, D. Su, Infrastructure safety oriented traffic load monitoring
using multi-sensor and single camera for short and medium span bridges, Remote
Sens. 11 (22) (2019) 2651.

[31] L. Ge, D. Dan, H. Li, An accurate and robust monitoring method of full-bridge
traffic load distribution based on YOLO-v3 machine vision, Struct. Control Health
Monit. 27 (12) (2020).

[32] A. Krizhevsky, I. Sutskever, G.E. Hinton, ImageNet classification with deep
convolutional neural networks, Adv. Neural Inform. Process. Syst. 25 (2012)
1097–1105.

[33] L. Liu, W. Ouyang, X. Wang, P. Fieguth, J. Chen, X. Liu, M. Pietikäinen, Deep
learning for generic object detection: a survey, Int. J. Comput. Vision 128 (2)
(2020) 261–318.

[34] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.Y. Fu, A.C. Berg, SSD: single
shot multibox detector. In European Conference on Computer Vision. Springer,
Cham, 2016, pp. 21–37.

[35] A. Bochkovskiy, C.-Y. Wang, H.-Y.M. Liao, YOLOv4: optimal speed and accuracy of
object detection, ArXiv Preprint (2020). ArXiv:2004.10934.

[36] M. Everingham, L. Van Gool, C.K. Williams, J. Winn, A. Zisserman, The pascal
visual object classes (VOC) challenge, Int. J. Comput. Vision 88 (2) (2010)
303–338.

[37] M. Everingham, S.M. Eslami, L. Gool, C.K. Williams, J. Winn, A. Zisserman, The
pascal visual object classes challenge: a retrospective, Int. J. Comput. Vision 111
(1) (2015) 98–136.

[38] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, M. Bernstein,
ImageNet large scale visual recognition challenge, Int. J. Comput. Vision 115 (3)
(2015) 211–252.

[39] T.-Y. Lin, M. Maire, S.J. Belongie, J. Hays, P. Perona, D. Ramanan, Microsoft
COCO: Common objects in context. In European Conference on Computer Vision,
2014, pp. 740–755.

[40] A. Geiger, P. Lenz, R. Urtasun, We ready for autonomous driving? The KITTI vision
benchmark suite, in: 2012 IEEE Conference on Computer Vision and Pattern
Recognition, 2012, p. 3354–3361.

[41] Z. Zhang, Camera calibration with one-dimensional objects, IEEE Trans. Pattern
Anal. Mach. Intell. 26 (7) (2004) 892–899.

[42] R.Y. Tsai, A versatile camera calibration technique for high-accuracy 3D machine
vision metrology using off-the-shelf TV cameras and lenses, Radiometry (1992)
221–244.

[43] J. Heikkila, Geometric camera calibration using circular control points, IEEE Trans.
Pattern Anal. Mach. Intell. 22 (10) (2000) 1066–1077.

[44] Z. Zhang, A flexible new technique for camera calibration, IEEE Trans. Pattern
Anal. Mach. Intell. 22 (11) (2000) 1330–1334.

[45] W. Sun, R. Cooperstock, An empirical evaluation of factors influencing camera
calibration accuracy using three publicly available techniques, Mach. Vision Appl.
17 (1) (2006) 51–67.

[46] E. Arnold, O.Y. Al-Jarrah, M. Dianati, S. Fallah, D. Oxtoby, A. Mouzakitis, A survey
on 3D object detection methods for autonomous driving applications, IEEE Trans.
Intell. Transp. Syst. 20 (10) (2019) 3782–3795.

[47] W. Luo, J. Xing, A. Milan, X. Zhang, W. Liu, T.-K. Kim, Multiple object tracking: a
literature review, Artif. Intell. 293 (2021), 103448.

J. Zhu et al.

http://refhub.elsevier.com/S0263-2241(21)00626-6/h0005
http://refhub.elsevier.com/S0263-2241(21)00626-6/h0005
http://refhub.elsevier.com/S0263-2241(21)00626-6/h0005
http://refhub.elsevier.com/S0263-2241(21)00626-6/h0020
http://refhub.elsevier.com/S0263-2241(21)00626-6/h0020
http://refhub.elsevier.com/S0263-2241(21)00626-6/h0025
http://refhub.elsevier.com/S0263-2241(21)00626-6/h0025
http://refhub.elsevier.com/S0263-2241(21)00626-6/h0030
http://refhub.elsevier.com/S0263-2241(21)00626-6/h0030
http://refhub.elsevier.com/S0263-2241(21)00626-6/h0050
http://refhub.elsevier.com/S0263-2241(21)00626-6/h0050
http://refhub.elsevier.com/S0263-2241(21)00626-6/h0055
http://refhub.elsevier.com/S0263-2241(21)00626-6/h0055
http://refhub.elsevier.com/S0263-2241(21)00626-6/h0060
http://refhub.elsevier.com/S0263-2241(21)00626-6/h0060
http://refhub.elsevier.com/S0263-2241(21)00626-6/h0065
http://refhub.elsevier.com/S0263-2241(21)00626-6/h0065
http://refhub.elsevier.com/S0263-2241(21)00626-6/h0065
http://refhub.elsevier.com/S0263-2241(21)00626-6/h0070
http://refhub.elsevier.com/S0263-2241(21)00626-6/h0070
http://refhub.elsevier.com/S0263-2241(21)00626-6/h0070
http://refhub.elsevier.com/S0263-2241(21)00626-6/h0075
http://refhub.elsevier.com/S0263-2241(21)00626-6/h0075
http://refhub.elsevier.com/S0263-2241(21)00626-6/h0075
http://refhub.elsevier.com/S0263-2241(21)00626-6/h0080
http://refhub.elsevier.com/S0263-2241(21)00626-6/h0080
http://refhub.elsevier.com/S0263-2241(21)00626-6/h0080
http://refhub.elsevier.com/S0263-2241(21)00626-6/h0085
http://refhub.elsevier.com/S0263-2241(21)00626-6/h0085
http://refhub.elsevier.com/S0263-2241(21)00626-6/h0085
http://refhub.elsevier.com/S0263-2241(21)00626-6/h0090
http://refhub.elsevier.com/S0263-2241(21)00626-6/h0090
http://refhub.elsevier.com/S0263-2241(21)00626-6/h0090
http://refhub.elsevier.com/S0263-2241(21)00626-6/h0090
http://refhub.elsevier.com/S0263-2241(21)00626-6/h0095
http://refhub.elsevier.com/S0263-2241(21)00626-6/h0095
http://refhub.elsevier.com/S0263-2241(21)00626-6/h0095
http://refhub.elsevier.com/S0263-2241(21)00626-6/h0100
http://refhub.elsevier.com/S0263-2241(21)00626-6/h0100
http://refhub.elsevier.com/S0263-2241(21)00626-6/h0105
http://refhub.elsevier.com/S0263-2241(21)00626-6/h0105
http://refhub.elsevier.com/S0263-2241(21)00626-6/h0110
http://refhub.elsevier.com/S0263-2241(21)00626-6/h0110
http://refhub.elsevier.com/S0263-2241(21)00626-6/h0115
http://refhub.elsevier.com/S0263-2241(21)00626-6/h0115
http://refhub.elsevier.com/S0263-2241(21)00626-6/h0120
http://refhub.elsevier.com/S0263-2241(21)00626-6/h0120
http://refhub.elsevier.com/S0263-2241(21)00626-6/h0125
http://refhub.elsevier.com/S0263-2241(21)00626-6/h0125
http://refhub.elsevier.com/S0263-2241(21)00626-6/h0125
http://refhub.elsevier.com/S0263-2241(21)00626-6/h0130
http://refhub.elsevier.com/S0263-2241(21)00626-6/h0130
http://refhub.elsevier.com/S0263-2241(21)00626-6/h0130
http://refhub.elsevier.com/S0263-2241(21)00626-6/h0135
http://refhub.elsevier.com/S0263-2241(21)00626-6/h0135
http://refhub.elsevier.com/S0263-2241(21)00626-6/h0135
http://refhub.elsevier.com/S0263-2241(21)00626-6/h0140
http://refhub.elsevier.com/S0263-2241(21)00626-6/h0140
http://refhub.elsevier.com/S0263-2241(21)00626-6/h0140
http://refhub.elsevier.com/S0263-2241(21)00626-6/h0140
http://refhub.elsevier.com/S0263-2241(21)00626-6/h0145
http://refhub.elsevier.com/S0263-2241(21)00626-6/h0145
http://refhub.elsevier.com/S0263-2241(21)00626-6/h0145
http://refhub.elsevier.com/S0263-2241(21)00626-6/h0150
http://refhub.elsevier.com/S0263-2241(21)00626-6/h0150
http://refhub.elsevier.com/S0263-2241(21)00626-6/h0150
http://refhub.elsevier.com/S0263-2241(21)00626-6/h0155
http://refhub.elsevier.com/S0263-2241(21)00626-6/h0155
http://refhub.elsevier.com/S0263-2241(21)00626-6/h0155
http://refhub.elsevier.com/S0263-2241(21)00626-6/h0160
http://refhub.elsevier.com/S0263-2241(21)00626-6/h0160
http://refhub.elsevier.com/S0263-2241(21)00626-6/h0160
http://refhub.elsevier.com/S0263-2241(21)00626-6/h0165
http://refhub.elsevier.com/S0263-2241(21)00626-6/h0165
http://refhub.elsevier.com/S0263-2241(21)00626-6/h0165
http://refhub.elsevier.com/S0263-2241(21)00626-6/h0175
http://refhub.elsevier.com/S0263-2241(21)00626-6/h0175
http://refhub.elsevier.com/S0263-2241(21)00626-6/h0180
http://refhub.elsevier.com/S0263-2241(21)00626-6/h0180
http://refhub.elsevier.com/S0263-2241(21)00626-6/h0180
http://refhub.elsevier.com/S0263-2241(21)00626-6/h0185
http://refhub.elsevier.com/S0263-2241(21)00626-6/h0185
http://refhub.elsevier.com/S0263-2241(21)00626-6/h0185
http://refhub.elsevier.com/S0263-2241(21)00626-6/h0190
http://refhub.elsevier.com/S0263-2241(21)00626-6/h0190
http://refhub.elsevier.com/S0263-2241(21)00626-6/h0190
http://refhub.elsevier.com/S0263-2241(21)00626-6/h0205
http://refhub.elsevier.com/S0263-2241(21)00626-6/h0205
http://refhub.elsevier.com/S0263-2241(21)00626-6/h0210
http://refhub.elsevier.com/S0263-2241(21)00626-6/h0210
http://refhub.elsevier.com/S0263-2241(21)00626-6/h0210
http://refhub.elsevier.com/S0263-2241(21)00626-6/h0215
http://refhub.elsevier.com/S0263-2241(21)00626-6/h0215
http://refhub.elsevier.com/S0263-2241(21)00626-6/h0220
http://refhub.elsevier.com/S0263-2241(21)00626-6/h0220
http://refhub.elsevier.com/S0263-2241(21)00626-6/h0225
http://refhub.elsevier.com/S0263-2241(21)00626-6/h0225
http://refhub.elsevier.com/S0263-2241(21)00626-6/h0225
http://refhub.elsevier.com/S0263-2241(21)00626-6/h0230
http://refhub.elsevier.com/S0263-2241(21)00626-6/h0230
http://refhub.elsevier.com/S0263-2241(21)00626-6/h0230
http://refhub.elsevier.com/S0263-2241(21)00626-6/h0235
http://refhub.elsevier.com/S0263-2241(21)00626-6/h0235

	An accurate approach for obtaining spatiotemporal information of vehicle loads on bridges based on 3D bounding box reconstr ...
	1 Introduction
	2 The framework
	3 Vehicle detection
	3.1 YOLO-v4 framework
	3.2 Vehicle datasets
	3.3 Training of YOLO-v4

	4 Vehicle 3D bounding box reconstruction
	4.1 ‘Bridge-Vehicle-Camera’ system
	4.2 Reconstruction model

	5 Vehicle tracking
	6 Application of the proposed approach
	6.1 Detector training and testing
	6.2 Camera calibration
	6.3 Vehicle spatiotemporal information acquisition
	6.4 Error analysis
	6.5 Comparison with related works

	7 Conclusions
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Acknowledgements
	References

