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A B S T R A C T   

Vehicle load is an important basis for bridge design, condition assessment, and maintenance and strengthening, 
and its statistical laws can help us further understand the behavior of bridges under vehicle loads. Therefore, it is 
important to obtain accurate vehicle weight and vehicle spatiotemporal information that reflects the load time 
history. As of now, vehicle weight can be obtained using WIM technology, but there are still some issues in the 
methods of obtaining vehicle information. The coordinate transformation method is simple to operate, but 
sacrifices accuracy. The existence of a certain distance from the tail of vehicles to bridge decks makes the results 
based on dual-target detection differ from the actual. Therefore, an accurate approach for obtaining spatio
temporal information of vehicle loads on bridges based on 3D bounding box reconstruction with computer vision 
is proposed in this paper. To achieve this, a deep convolutional neural network (DCNN) and the You Only Look 
Once (YOLO) detector are used to detect vehicles and get the 2D bounding box. By establishing the relationship 
between 2D and 3D bounding box of the vehicle, an algorithm for 3D bounding box reconstruction of vehicles is 
proposed to get the sizes and position of vehicles. The spatiotemporal information of the vehicle loads is finally 
obtained by using multiple objects tracking (MOT). To verify the accuracy and reliability of the proposed 
approach, a bridge vehicle loads identification system (BVLIS) was developed and tested on a cable-stayed bridge 
in operation. The results show that the approach is accurate and reliable, and can be used to obtain vehicle 
information and provide vehicle load boundary conditions for bridge finite element modeling.   

1. Introduction 

As a major variable load on bridges, vehicle loads may lead to fatigue 
cracking or even collapse of bridges. In addition, vehicle loads are also 
an important basis for bridge design, condition assessment, safety 
evaluation, and maintenance and strengthening, and the statistical laws 
can help us further understand the behavior of bridges under vehicle 
loads. Therefore, an accurate and reliable identification of vehicle loads 
is very important, which includes vehicle weighing and the acquisition 
of vehicle spatiotemporal information (i.e., type, position, size, speed 
and trajectory, etc.). 

The early methods to obtain gross vehicle weight (GVW) were static 
weighing techniques [1], which had good accuracy, but were also 
expensive and time-consuming. For weighing while the vehicle is in 
motion, weigh-in-motion (WIM) techniques [2–4] were proposed. 
However, the corresponding equipment is subject to damage from heavy 

vehicles and is less durable. Later, the concept of bridge weigh-in- 
motion (B-WIM) [5] was proposed and several B-WIM systems (e.g., 
Axway, Culway, and SiWIM) [6–8] were developed to obtain wheel 
loads. Nonetheless, it is difficult to obtain accurate results due to the 
effect of vehicle lateral position and vibration [9]. Therefore, the mov
ing force identification (MFI) methods for obtaining the time history of 
moving loads were proposed, including the interpretive method I (IMI) 
[10], the interpretive method II (IMII) [11], the time domain method 
(TDM) [12], and the frequency-time domain method (FTDM) [13]. 
Meanwhile, the researches in data analysis [14] and sensing technology 
[15–18] were also done to improve the accuracy. However, the appli
cation of dynamic algorithms to practice is difficult due to the large 
amount of numerical calculation and the high demand on the finite 
element model. 

In recent years, the computer vision technology has been introduced 
into the monitoring of infrastructure [19–22]. By using cameras for 
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bridge deflections measurement and traffic monitoring, Ojio [23] pro
posed a contactless bridge weigh-in-motion (cBWIM) system. Feng et al. 
[24] introduced an innovative weighing method by estimating the 
contact pressure of a vehicle tire and the contact area, but the lack of tire 
pressure data makes it difficult to use in practice. In order to obtain 
spatiotemporal information such as vehicle location and trajectory, 
scholars have performed real-time information acquisition by vehicle 
detection (using background subtraction or Gaussian mixture model 
method) and tracking (using template matching, particle filtering 
techniques, or Kalman filtering algorithms) [25–26]. However, the 
sensitivity of detection algorithms to environmental conditions (e.g., 
lighting and shadows) makes the vehicle information acquisition 
method less robust. 

With the rapid development of deep learning techniques and the 
availability of well-established detectors, vehicle detection has become 
efficient and reliable, and some deep learning-based methods for 
obtaining vehicle information have appeared in related reports. Zhang 
et al. [27] proposed a method of getting spatiotemporal information of 
vehicles on bridges based on the technology of DCNN and image cali
bration method. However, the image calibration method requires stan
dard vehicles for data acquisition and fitting, which undoubtedly 
increases the complexity of system deployment. Zhou et al. [28] pro
posed an identification method in which the vehicle was detected by 
using a trained Faster R-CNN model and then tracked using the Kalman 
filter method. Jian et al. [29] proposed a traffic sensing methodology 
capable of automatically identifying the vehicle loads and speeds. Xia 
et al. [30] proposed a traffic monitoring methodology for complicated 
traffic scenarios. Although the coordinate transformation method makes 
the mapping of information in images to 3D space simple and easy, it 
introduces more computational errors as a result. Ge et al. [31] proposed 
a monitoring method of full-bridge traffic load distribution based on 
YOLO-v3 machine vision. In this report, the spatial information of the 
vehicle is obtained using a dual-target detection model that can detect 
the profile and the tail of vehicles and the vision principle. However, the 
distance between the tail of the vehicle and the bridge deck in reality 
will inevitably bring errors to the calculation of spatial information. 
Meanwhile, the workload of image annotation has increased signifi
cantly compared to single-target detection. 

Although the WIM techniques can obtain some vehicle information, 
its accuracy is not enough. Therefore, scholars have turned to computer 
vision techniques to obtain spatiotemporal information about vehicles. 
Since the traditional image recognition methods have high sensitivity to 
environmental noise, it is difficult to cope with complex scenes with 
multiple vehicles. To address this issue, deep learning techniques are 
used for vehicle detection. Combining vehicle detection and tracking, 
some methods for vehicle spatiotemporal information acquisition are 
proposed in the latest reports. However, there are still some issues. The 
image calibration method does not reflect the real situation in 3D space; 
The coordinate transformation method is simple and easy, but at the cost 
of loss of accuracy; The method based on dual-target detection cannot 
correctly obtain the distance from the tail of the truck to the bridge deck. 
The presence of these factors, together with the distant traffic cameras, 
makes more inaccurate in the acquired vehicle spatiotemporal infor
mation, which affects our assessment of the bridge condition and our 
perception of its behavior. Therefore, we try to combine deep learning- 
based vehicle detection, camera calibration, and reconstruction of 
vehicle 3D bounding boxes to obtain the accurate vehicle spatiotem
poral information. The innovation of this paper is the establishment of 
the vehicle 3D bounding box reconstruction model and the derivation of 
the algorithm equations, as well as the accurate vehicle load spatio
temporal information thus obtained. This approach eliminates excessive 
errors caused by assumptions and approximations, thus making the 
obtained data more reliable and practical. 

In this paper, we proposed an accurate approach for obtaining 
spatiotemporal information of vehicle loads on bridges based on 3D 
bounding box reconstruction with computer vision. The 2D bounding 

box of the vehicle is first obtained using deep learning technology. Then 
the 3D bounding box was reconstructed based on the reconstruction 
model by constructing spatial mapping relationship and the vehicle sizes 
and position were obtained. Finally, the vehicle spatiotemporal infor
mation was obtained by using MOT. The rest of the paper consists of two 
parts: The first part is a statement of principle and the second part is an 
application of the approach. Section 2 explains the research framework 
in detail. Section 3 shows the DCNN architecture and detector frame
work, then explains the process of the dataset creation and gives the loss 
function in the vehicle detection model. In Section 4, an approach for 
reconstructing 3D bounding box of vehicles is proposed by constructing 
spatial mapping relationship between 2D and 3D bounding box. In 
Section 5, the tracking and spatiotemporal information of vehicles is 
obtained using MOT. Section 6 gives an application of the proposed 
approach and analyzes the error of the test results. Conclusions are given 
in Section 7. 

2. The framework 

The framework contains 3 parts: The first part is detection and 
classification of vehicles. Part two contains ‘Bridge-Vehicle-Camera’ 
system (BVCS) and the reconstruction model of vehicle 3D bounding 
box. The last part is vehicle tracking. The details are shown in Fig. 1. 

In part one, the images of vehicles are captured on urban bridges or 
roads using cameras in a variety of different environments (e.g. different 
lighting conditions). Then, the type and axis-aligned ground truth box of 
vehicles are annotated, and the dataset is formed. Considering the speed 
and accuracy in real-time detection, YOLO-v4, gradient descent algo
rithm and hardware acceleration are used for the model training. When 
the loss function drops rapidly and stabilizes, the weight and bias are 
saved and the vehicle detector is obtained. Finally, the detector is used 
to detect different types of vehicles, and the confidence score and 2D 
bounding box are obtained. 

In part two, a camera is installed on the side of the bridge deck, thus 
forming the BVCS. Then, the camera is calibrated with two different 
calibration boards. A small calibration board is used to obtain the ac
curate intrinsic parameter matrix. The extrinsic parameter matrix is then 
obtained using a large calibration board laid on the bridge deck. By 
establishing the relationship between 2D and 3D bounding box, a model 
for 3D bounding box reconstruction is proposed. Finally, the confidence 
score and 3D bounding box are obtained. 

In the last part, a region of interest (ROI) is set on the bridge deck 
firstly. Then, the vehicle status matrix is formed during detecting. Ac
cording to threshold value based on estimates and field tests, vehicle 
tracking is achieved by traversing all vehicles in the previous frame to 
get the distance between vehicles in two adjacent frames. Once a vehicle 
enters the ROI, its trajectory, No. and the moment are recorded and the 
status matrix is updated. The axle number is then determined based on 
vehicle type, size and statistics. When the vehicle leaves the ROI, the 
tracking is terminated and the information is written to a data file. 

3. Vehicle detection 

3.1. YOLO-v4 framework 

As the vehicle travels at high speeds on the bridge, the real-time 
detection capability is critical. Based on DCNN, several detectors have 
been proposed for object detection, including two-stage (RCNN, SPPNet, 
Fast RCNN, Faster RCNN) and one-stage (DetectorNet, OverFeat, YOLO 
and SSD) detectors [32–35]. In comparison, the two-stage detectors are 
computationally expensive for many devices with limited storage and 
computational capability, the one-stage detector provides a good bal
ance between efficiency and accuracy. Being one-stage detectors, both 
SSD and YOLO have good detection performance. However, with the 
improvement of algorithm, the latest version of YOLO detector [35] has 
obvious advantages in accuracy and speed. Therefore, YOLO-v4 is used 
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for vehicle detection. 
As shown in Fig. 2, the framework of YOLO-v4 consists of 5 parts: 

Input, backbone, neck, prediction and output. To achieve an optimal 

balance in terms of the input network resolution, the convolutional layer 
number and the parameter number, the CSPDarknet53 with 53 con
volutional layers and 23 residual blocks is used as the backbone of the 

Fig. 1. Framework of the proposed approach 
(Note: Vehicle datasets is used for model 
training in deep learning. Detector refers to 
the data file containing the weights and 
biases after the model is trained and the 
program code used for vehicle detection. 
When the detector reads in the vehicle 
image, it extracts the feature map and plots 
the detection results as shown in the graph 
on the right. Based on vehicle detection, 
camera calibration, etc., the reconstruction 
model is proposed and used for the acquisi
tion of vehicle size and spatial position. In 
order to get information such as the speed 
and trajectory of the vehicle, the vehicle 
must be tracked.)   

Fig. 2. YOLO-v4 framework (Note: The CSP refers to Cross-Stage-Partial strategy, and the number 8 after it means that the block contains 8 residual blocks. The Neck 
contains 3 operation modules for further processing the feature maps output from CSPDarknet53 to obtain richer spatial information.) 
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YOLO-v4. The CSPDarknet53 is the network formed by applying the 
Cross-Stage-Partial (CSP) strategy to Darknet53, and its architecture are 
listed in Table 1. When the image with 608 × 608 pixels is passed to 
CSPDarknet53, feature maps at different scales are obtained. In order to 
make the feature maps contain richer information and thus the frame
work has better detection accuracy, two techniques are introduced into 
it, one is spatial pyramid pooling (SPP) module and the other is path 
aggregation network (PANet). The SPP module significantly increased 
the receptive field and separates the most important contextual features 
without slowing down the network operation. The PANet introduced a 
short-cut path to make low-layer information easier to propagate to the 
top and make fine-grain localized information available to top layers. In 
the prediction stage, the multi-class classification and bounding box 
regression are carried out on multiple scales. In order to measure the 
distance between the prediction and the actual and to optimize the 
weights, the value of the loss function needs to be calculated. The loss 
function in YOLO-v4 consists of 3 parts: Bounding box regression loss, 
classification loss, and confidence loss, whose expressions are as follows: 

Loss = Lloc + Lcls +Lconf . (1) 

In bounding box regression, the mean square error (MSE) method 
used in the old version of YOLO is removed and replaced by the 
complete-IoU (CIoU) algorithm. This is because the CIoU loss considers 
several aspects of overlapping area, center-of-mass distance and aspect 
ratio simultaneously, and thus better convergence speed and accuracy 
can be obtained. After multi-class classification and bounding box 
regression in the feature maps, the fast non-maximum suppression (Fast 
NMS) method [30] is used to retain the local maximum value of confi
dence score to obtain the final result. 

3.2. Vehicle datasets 

In general object detection, there are a number of well-known 
datasets. However, the datasets of PASCAL VOC Challenges [36–37] 
and ImageNet Large Scale Visual Recognition Challenge [38] include 
only a few types of vehicles such as car, bus and truck. The MS-COCO 
Detection Challenge dataset [39] and the KITTI dataset [40] contain 
images of some large vehicles, but their appearance is quite different 
from the appearance of the vehicles we want to detect. Therefore, the 
vehicle images in these datasets cannot be directly used for training the 
YOLO network, but instead, it is necessary to create custom vehicle 
datasets with less bias. 

Since the detection is performed by extracting the feature map, the 
vehicle with similar physical characteristics can be grouped together. 
Therefore, based on the investigation of vehicles passing on urban 
bridges, the vehicle is classified into a total of nine types, which 
including car, sport utility vehicle (SUV), light truck, pickup truck, 
minibus, bus, heavy truck, tractor trailer and special vehicle. The pro
cedure of creating datasets is as follows. 

(1) To contain significant variability [36] in terms of object size, 
orientation, pose, illumination, position and occlusion, the images of 
vehicles are taken by using the camera, or by downloading from the 
internet. With a limited datasets, the number of images per type vehicle 
should not vary too much from each other in order to ensure the ability 

to detect different types of vehicles. 
(2) The random sampling method is used to divide the vehicle 

dataset into two parts: One part is the training dataset, accounting for 
80% of the whole data, which is used for the training of the vehicle 
detector. The other part is the testing dataset, which accounts for 20% of 
the whole data and is used to evaluate the capability and accuracy of the 
detector. 

(3) The images in datasets are annotated with two attributes: One is 
category tags, including car, SUV, light truck, pickup truck, minibus, 
bus, heavy truck, tractor trailer, and special vehicle. Another is an axis- 
aligned ground truth box surrounding vehicles present in the image. 
When there are multiple vehicles in the same image, ground truth boxes 
are drawn and category tags are added to different vehicles to increase 
the data samples. The classification and category tag of the dataset are 
shown in Fig. 3. 

(4) The image size, category tags, and the pixel coordinates of all 
ground truth boxes are extracted and written to files. At the same time, 
each label is encoded as an integer from 0 to 8 to represent the nine 
different vehicle types. 

To extend the training dataset, the feature adjustments and size 
changes for images are used. New images are formed by adjusting the 
brightness, contrast, saturation and hue of the image in vehicle dataset, 
and flipping horizontally with a 50% chance and in random order. To 
improve the ability to detect small targets (vehicles that occupy less 
space in the image), the width and height of the original image are 
multiplied by a randomly selected expansion ratio to calculate the size of 
the canvas, and then the original image is placed into that canvas to form 
a new image. Accordingly, by randomly cropping the target object in the 
original image, a new image is formed to increase the sample number of 
large or occluded targets. 

3.3. Training of YOLO-v4 

To obtain the vehicle detection model, the YOLO-v4 was trained 
iteratively using the created dataset. The specific training process is as 
follows: 

(1) Select the appropriate batch size according to the computer 
hardware, especially the graphics processing unit (GPU). Meanwhile, in 
order to avoid getting into a local optimal solution, the appropriate 
learning rate was chosen according to the literature [34]. 

(2) After setting the initial parameters, the iterative training of the 
YOLO-v4 was started. To facilitate real-time evaluation of the detection 
model during training, the training results of the parameters such as 
weights and biases need to be saved at regular intervals. 

(3) The final values of the YOLO-v4 parameters are obtained by 
terminating the training when the loss function is no longer decreasing, 
and will be used for image feature extraction and vehicle detection. 

4. Vehicle 3D bounding box reconstruction 

4.1. ‘Bridge-Vehicle-Camera’ system 

To detect the vehicles on bridge decks, cameras need to be installed 
on both sides of the bridge deck. The camera should be in a fixed posture 
during operation. Meanwhile, the position and angle should be 
reasonable to capture 3 surfaces of the vehicles. To facilitate camera 
calibration, a flat area on the bridge deck is chosen as the target region 
for the camera. Once the camera is installed, the bridge, the vehicle and 
the camera form a BVCS as shown in Fig. 4. Four coordinate systems are 
created in the BVCS and they are world coordinate system (WCS), 
vehicle coordinate system (VCS), camera coordinate system (CCS) and 
pixel coordinate system (PCS). 

(1) WCS is created on half the bridge deck. The direction parallel to 
the lane markings and consistent with travelling is defined as X , the 
direction perpendicular to the X and pointing outward from half the 
bridge deck is defined as Y. The Z is perpendicular to the bridge deck and 

Table 1 
Architecture of CSPDarknet53 (Note: BN refers to batch normalization. Mish 
means mish activation function. ResBlock denotes the residual block).  

Type Number Filters Output 

Conv2D + BN + Mish 1 32 608 × 608 
ResBlock 1 64 304 × 304 
ResBlock 2 128 152 × 152 
ResBlock 8 256 76 × 76 
ResBlock 8 512 38 × 38 
ResBlock 4 1024 19 × 19  
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downwards. Once the WCS is created, the lane number of the vehicle can 
be determined by the vehicle location coordinates, and the speed of the 
vehicle can be obtained by tracking the vehicle. 

(2) VCS is a local coordinate system that moves with the vehicle. 
Each vehicle has a 3D bounding box that just encloses its body. To 
represent the size of the vehicle and the coordinates of the 3D bounding 
box vertexes, VCS is created. The origin of VCS is located at the midpoint 
of the bottom of 3D bounding box. The direction of travelling is defined 
as Xveh, and the direction perpendicular to Xveh and pointing to the 
outside of the bridge deck is defined as Yveh. The Zveh is perpendicular to 
the bridge deck and upwards. In most cases, X and Xveh are oriented in 
the same direction. However, when a vehicle changes lane, a certain 
angle between the two axes comes, which is denoted by θ. 

(3) CCS is a coordinate system attached to the camera. Taking the 
optical center of the camera as the origin and the two axes of the image 
sensor as Xc and Yc. The direction of the lens is defined as Zc, which is 
shown in Fig. 4. Once the camera is fixed, the translational and rota
tional relationship between CCS and WCS is unique. Then the coordi
nation of the 3D bounding box vertexes in WCS can be converted to the 

coordinates in CCS. 
(4) PCS is created on the image plane and its origin is located at one 

corner of the image plane. The coordinates represent the number of rows 
and columns of that pixel in the image. Once the vehicle is detected, the 
3D bounding box can be drawn in the image by using pixel coordinates. 

Given that the coordinates of the 3D bounding box vertexes in VCS 
are[Xveh,Yveh,Zveh]

T, the coordinates of the middle point at the bottom of 

3D bounding box in WCS are
[
px, py,0

]T
, the angle between Xveh and X is 

θ. For each vertex of the 3D bounding box, its coordinates can be con
verted from VCS to WCS using the following formula 
⎡

⎣
X
Y
Z

⎤

⎦ =

⎡

⎣
px
py
0

⎤

⎦+

⎡

⎣
cosθ − sinθ 0
sinθ cosθ 0

0 0 1

⎤

⎦

⎡

⎣
Xvec
Yvec
Zvec

⎤

⎦ (2) 

Since the positions of WCS and CCS are arbitrary, it can be assumed 
that there is a translation matrix t3×1 and a rotation matrix R3×3 between 
them. According to the pinhole camera model [41], the coordinate 
transformation from WCS to CCS can be expressed as 

Fig. 3. Classification and annotation of the vehicles in datasets: (a) car; (b) sport utility vehicle (SUV); (c) light truck; (d) pickup truck; (e) minibus; (f) bus; (g) heavy 
truck; (h) tractor trailer; (i) special vehicle. 

Fig. 4. ‘Bridge-Vehicle-Camera’ system (Note: In addition to the world coordinate system (WCS), the system also includes two local coordinate systems, vehicle 
coordinate system (VCS) and camera coordinate system (CCS). The 3D bounding box refers to the cuboid that wraps tightly around the body of the vehicle.) 
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s

⎡

⎣
u
v
1

⎤

⎦ = K3×3[R3×3 t3×1 ]

⎡

⎢
⎣

X
Y
Z
1

⎤

⎥
⎦ = P

⎡

⎢
⎣

X
Y
Z
1

⎤

⎥
⎦, (3)  

where s is an arbitrary scale factor, P is the projection transformation 
matrix, [R t] is the camera extrinsic parameter matrix, and the camera 
intrinsic matrix K is given by 

K =

⎡

⎣
α γ u0
0 β v0
0 0 1

⎤

⎦

(u0, v0) is the coordinates of the principal point, α and β are the scale 
factors on the u and v axes of the image respectively, and γ is the 
parameter describing the skewness of the two axes. 

When a camera is installed on a bridge deck, its posture relative to 
the bridge deck is unique. In order to obtain the matrix P, the camera 
needs to be calibrated. Among several camera calibration methods, the 
representative ones are Tsai [42], Heikkila [43] and Zhang’s [44] 
methods. However, the first two methods require accurate 3D mea
surement data and are sensitive to measurement errors. For Zhang’s 
methods, the sensitivity to noise can be reduced by increasing the 
number of corner points on the calibration board, and no laborious 
measuring task is required [45]. Therefore, the flexibility provides a 
great convenience for the calibration of the camera on the bridge. The 
calibration process consists of the following two steps: 

(1) Calibration in the room: Take 13 images of the small calibration 
board at different distances and angles, and then use them for camera 
calibration. The calibration results include intrinsic and extrinsic 
parameter matrix of the camera. For a given camera, the intrinsic 
parameter matrix reflects its inherent characteristics and can be saved 
for the secondary calibration of the camera. 

(2) Calibration on the bridge deck: A large calibration board is laid 
flat on the middle lane of half the bridge deck with its edge next to the 
lane markings. After taking an image of the large calibration board and 
getting the pixel coordinates of each grid corner in the image, the 
camera is calibrated for the second time. 

Once the calibration of the camera is complete, the matrix P is ob
tained, and the WCS is also created on the bridge deck. Calibration on 
the bridge deck may have some impact on traffic flow, so it is appro
priate to choose a moment that the traffic flow is low, such as the early 
hours of the morning. 

4.2. Reconstruction model 

With the development of deep learning techniques, scholars have 
proposed various methods to perform depth estimation of 3D objects 
[46]. Unfortunately, these methods require labeled 3D training datasets. 
For a camera fixed to a bridge, such 3D data is very difficult to obtain. 
Therefore, inspired by these methods, we propose a 3D reconstruction 
model based on 2D bounding box and the statistical characteristics of 
vehicle sizes. In Section 3, the 2D bounding box of the vehicle can be 
obtained during detecting. When the 3 surfaces of the vehicle are visible 
in the camera lens, the 3D bounding box can be projected into image 
based on Eq. (2), Eq. (3), and the projection transformation matrix P. 
After the two boxes are drawn in the same image and PCS is added, the 
relationship between them is shown in Fig. 5, which includes 2D 
bounding box, 3D bounding box, VCS (OvecXvecYvecZvec), WCS (OXYZ), 
PCS (ouv), and the position (uL, uR,vT ,vB) of the vehicle in the image. The 
angle between the direction of travelling and the lane markings at a 
certain time is θ. The parameters vector of the vehicle is 
[
px, py, θ, l,w, h

]T
, where (l,w, h) denotes half-length, half-width and 

height of the vehicle respectively. It can be seen from Fig. 5 that 4 
points(A,B,C,D) on the 3D bounding box are on the edge of the 2D 
bounding box. According to section 4.1, the coordinates of the 4 points 
in WCS are obtained by Eq. (2) and they can be written as homogeneous 
coordinate(X*,Y*,Z*, 1), where * = A,B,C or D. Then Eq. (3) is used to 
project the 4 points into the PCS. As shown in Fig. 5, the y coordinates 
components of A and C after being projected are equal to the pixel co
ordinates in the v direction of the lower and upper edges of the 2D 
bounding box in the image, respectively. Similarly, the x coordinates 
components of B and D after being projected are equal to the pixel co
ordinates in the u direction of the right and the left edge of the 2D 
boundary box in the image, respectively. So, the constraint equations are 
obtained as follows 

uL =

⎛
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(4) 

Fig. 5. Reconstruction model for vehicle 3D bounding box (Note: The 2D bounding box is the result of the vehicle detection, and ‘point’ is one of the vertices on the 
3D bounding box. (uL, uR, vT , vB) refers to the pixel coordinates of the four edges of the 2D bounding box of the vehicle in the image. θ is the angle between the 
direction of travelling and the lane markings. (l,w, h) denotes half-length, half-width and height of the vehicle.) 
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where ()x, ()y and ()z refer to the x , y and z coordinate components 
respectively after the projection. 

When a vehicle is moving, the angle θ between the direction of 
travelling and the lane markings is approximately zero in most cases, 
except that when the vehicle is changing lanes. As a result, the param

eters vector of the vehicle becomes 
[
px, py, l,w, h

]T
. 

For convenience, the elements of the matrix P are written as 

P =

⎡

⎣
a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34

⎤

⎦ (5) 

Combining Eq. (4) and Eq. (5) and substituting the coordinates of the 
4 points (A, B, C and D) into Eq. (4), the following set of equations are 
obtained: 

[ a21 a22 a23 a24 ]

⎡

⎢
⎢
⎣

px + l
py + w

0
1

⎤

⎥
⎥
⎦ = vB[ a31 a32 a33 a34 ]

⎡

⎢
⎢
⎣

px + l
py + w

0
1

⎤

⎥
⎥
⎦

[ a11 a12 a13 a14 ]

⎡

⎢
⎢
⎣

px + l
py − w
− h
1

⎤

⎥
⎥
⎦ = uR[ a31 a32 a33 a34 ]

⎡

⎢
⎢
⎣

px + l
py − w
− h
1

⎤

⎥
⎥
⎦

(6)  

[ a21 a22 a23 a24 ]

⎡

⎢
⎢
⎣

px − l
py − w
− h
1

⎤

⎥
⎥
⎦ = vT [ a31 a32 a33 a34 ]

⎡

⎢
⎢
⎣

px − l
py − w
− h
1

⎤

⎥
⎥
⎦

[ a11 a12 a13 a14 ]

⎡

⎢
⎢
⎣

px − l
py + w
− h
1

⎤

⎥
⎥
⎦ = uL[ a31 a32 a33 a34 ]

⎡

⎢
⎢
⎣

px − l
py + w
− h
1

⎤

⎥
⎥
⎦

After some arranging, a set of equations about the vehicle parameters 
is obtained as 

f 
⎡

⎢
⎢
⎣

a21 − vBa31 a22 − vBa32 a21 − vBa31 a22 − vBa32 0
a11 − uRa31 a12 − uRa32 a11 − uRa31 − a12 +uRa32 − a13 +uRa33
a21 − vT a31 a22 − vT a32 − a21 +vT a31 − a22 + vT a32 − a23 + vT a33
a11 − uLa31 a12 − uLa32 − a11 +uLa31 a12 − uLa32 − a13 +uLa33

⎤

⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎣

px
py
l
w
h

⎤

⎥
⎥
⎥
⎦

=

⎡

⎢
⎣

vBa34 − a24
uRa34 − a14
vT a34 − a24
uLa34 − a14

⎤

⎥
⎦

Obviously, the number of unknowns is greater than the number of 
equations, so the vehicle parameters cannot be obtained. In order to add 
constraints to that set of equations, about 3600 vehicle samples are 
obtained from two automotive websites in China. The statistics and 
analysis of vehicle sizes revealed that the length of the same type of 
vehicles varied considerably, but the aspect ratio r (height/width) varies 
very little. The same type of vehicles is picked from the overall sample, 
and their aspect ratios were plotted in Fig. 6. For easy to use, the aspect 
ratio of different types of vehicles are listed in Table 2. Based on the 
aspect ratio listed in Table 2, a constraint on the ratio of the height and 
the width is added to Eq. (7), and then the vehicle parameters can be 
obtained by using the following equations 
⎡

⎢
⎢
⎢
⎢
⎣

a21 − vBa31 a22 − vBa32 a21 − vBa31 a22 − vBa32 0
a11 − uRa31 a12 − uRa32 a11 − uRa31 − a12 +uRa32 − a13 +uRa33
a21 − vT a31 a22 − vT a32 − a21 +vT a31 − a22 + vT a32 − a23 + vT a33
a11 − uLa31 a12 − uLa32 − a11 +uLa31 a12 − uLa32 − a13 +uLa33

0 0 0 − r 1

⎤

⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎣

px
py
l
w
h

⎤

⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎣

vBa34 − a24
uRa34 − a14
vT a34 − a24
uLa34 − a14

0

⎤

⎥
⎥
⎥
⎦

5. Vehicle tracking 

Depending on how objects are initialized, Multiple object tracking 
(MOT) can be grouped into two sets: Detection-based tracking (DBT) 
and detection-free tracking (DFT) [47]. In section 4, the 2D bounding 

Fig. 6. Aspect ratios of different types of vehicles (Note: The horizontal axis represents the number of samples of vehicles.)  
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box of the vehicle have been detected, so DBT is used. 
From Section 4, it is clear that if the vehicle is not yet fully in the 

camera lens, the calculation results in incorrect information. Therefore, 
a ROI is created on the bridge deck. Since then, the vehicle tracking only 
appears in the ROI, which is shown in Fig. 7. Suppose two adjacent 
frames are denoted as i and j respectively and there are m vehicles in the 
i-th frame. In the j-th frame, l vehicles have left the ROI, while n vehicles 
have entered the ROI. Thus, the state matrix composed of vehicle posi
tions in the two frames are 

Pi =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

V1
xi

V1
yi

V2
xi

V2
yi

⋮

Vm
xi

⋮

Vm
yi

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,Pj =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Vl+1
xj

Vl+1
yj

⋮

Vm
xj

⋮

Vm+n
xj

⋮

Vm
yj

⋮

Vm+n
yj

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(l < m)

The vehicle positions in the two frames are then traversed to calcu
late the Euclidean distance between the two vehicles as follows 

disi,j =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(

VM
xi
− VN

xj

)2
+
(

VM
yi
− VN

yj

)2
√

(M = 1, 2,⋯,m;N = l+ 1,⋯,m,⋯,m+ n), (9)  

where M and N represent the vehicle in frame i and j respectively. When 
the distance is less than the threshold δ, it is considered to be the same 
vehicle. The expression used to estimate δ is 

0.278
v

lp∙fr
< δ <

d
lp
, (10)  

where v is the maximum speed limits in km/h, lp is the side length of the 
square grid in the large calibration board, its unit is in meters. fr is the 
frame rate in fps. d is the minimum distance in meters between the two 
adjacent vehicles in the same lane. However, it is often a random 
number when vehicles are travelling. Therefore, δ need to be validated 
on-site. Although the YOLO detector has reliable detection performance, 
there is a probability of detection failure, which can cause interruptions 
in vehicle tracking. To address this problem, we predict the tracking 
bounding box in the current frame based on the 2D bounding box and 
the vehicle travel speed in the previous frame, and then use the inter
section over union (IoU) between the 2D bounding box and the tracking 
bounding box to ensure that the vehicle is successfully tracked. 

When a vehicle is being tracked, its information matrix Minfoj 
including No., type, time, position coordinates (x,y), sizes (l,w,h), lane 
number, instantaneous speed and number of axles need to be handled 
with different functions as shown in Fig. 7. Of all the information, the 
number of axles can be obtained from Table 3. The pseudo-code of the 
key parts of the vehicle tracking algorithm is listed in Table 4. 

Table 2 
Aspect ratios of different types of vehicles.  

Type Car SUV Light truck Pickup truck Minibus Bus Heavy truck Tractor trailer Special vehicle 

Aspect ratios  0.822  0.913  1.367  0.976  1.171  1.303  1.308  1.405  1.561  

Fig. 7. Vehicle tracking algorithm (Note: Vehicle tracking is based on vehicle detection. The status and information of successfully tracked vehicles will be added or 
updated to the matrix, while the status and information of vehicles that drive away from the ROI will be deleted.) 
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Minfoj =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

VN
No VN

Type VN
Time

VN
xj

VN
yj

VN
zj

VN
lj

VN
Lane

VN
wj

VN
Speedj

VN
hj

VN
Axis

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(N = l + 1,⋯,m,⋯,m + n)

6. Application of the proposed approach 

To verify the accuracy and reliability of the proposed approach, the 
BVLIS was developed and tested on the Silver Beach Yellow River Bridge 
in Lanzhou, China. As shown in Fig. 8a, it is a cable-stayed bridge with 
single-tower and double cable planes, which has a span of 2 × 133 m and 
a tower height of 79 m. Fig. 8b shows that the main bridge has a deck 
width of 25.5 m and 3 lanes within half the deck. The first two lanes are 
motorways with widths of 3 m and 3.6 m respectively, and the third lane 
is a mixed carriageway with a width of 2.7 m. 

6.1. Detector training and testing 

Six thousand images of vehicles were taken on urban bridges and 
roads by using the camera under different times and locations. Of all the 
images, the percentages of car, SUV, light truck, pickup truck, minibus, 
bus, heavy truck, tractor trailer, and special vehicle are 21.85%, 
15.48%, 9.18%, 8.26%, 10.26%, 14.87%, 6.84%, 6.35% and 6.91% 
respectively. The images were annotated with two attributes and 
divided into training and testing groups using a random sampling 
method. On the basis of the detector building and the parameters (the 
initial learning rate of 0.001 and a batch size of 16 images), 200,000 
training sessions were performed on a computer with GPU (GeForce GTX 
1080 Ti), CPU (Intel Core i7-8700K @ 3.7 GHz) and software environ
ment (Python 3.7 and PyTorch 1.7). During the training process, the 
total loss function decreased sharply from the beginning to stabilize at 
the later stage as shown in Fig. 9a, and the precision-recall curves of nine 
vehicle types on testing dataset are shown in Fig. 9b. As can be seen from 
the Fig. 9b, the model has good detection capability. Meanwhile, the 
average precision (AP) for each type of vehicles was obtained and listed 
in Table 5. 

6.2. Camera calibration 

To detect the vehicle in two different directions on the bridge deck, 
two cameras with a resolution of 2560 × 1440 and a frame rate of 30 fps 
were installed on both sides of the bridge deck at the end of the main 
bridge as shown in Fig. 8a. The two cameras worked in the same way, so 
the subsequent content was for the first camera only. According to 
several sets of tests on the bridge deck, it was found that when the 
camera was located at a height of 3.8 m, all three surfaces (top, front, 

Table 3 
The number of axles according to the length of the heavy truck and tractor trailer 
[27].  

The length of the vehicle 
(m) 

≤ 9  9 ~ 
10.5 

10.5 ~ 
13 

13 ~ 
14.5 

≥ 14.5  

The number of axles 2 3 4 5 6  

Table 4 
The pseudocode for the vehicle tracking.  
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and right) of the vehicle in the field of view had better visibility, thus 
facilitating the reconstruction of the 3D surround box. 

To get the camera posture relative to the bridge deck, the calibration 
was required twice in total. Thirteen images of the small calibration 
board were taken and imported into the system, the intrinsic parameter 
matrix was calculated and saved as an Excel file. For checking the 
calibration results, the first point gathered from the board was used as 
the origin of a coordinate system, and the row and column on the board 
as X and Y of WCS respectively, the coordinate system was shown in 
Fig. 10a. In the second calibration, a floor leather of dimension 3 × 2 m 
with a black and white square (the side length is 27.5 mm) was selected 
as the large calibration board and laid on lane 2 with one side imme
diately adjacent to the lane markings. The bridge deck and the large 
calibration board were shown in Fig. 10b and 10c respectively. An image 

of the board was taken with the camera, the pixel coordinates of each 
grid corner were gathered from the image and saved as a data file. By 
importing the image and the data file together into the BVLIS, the pro
jection matrix was obtained and the WCS was created on the bridge deck 
as shown in Fig. 10d. 

To check the accuracy of the second calibration, the projection of the 
grid corners was drawn on the image using small yellow circles. As can 
be seen from Fig. 10d, there is an accurate match between the projection 
and the original position. The deviation of the projection of grid corners 
from the original position was calculated and plotted in Fig. 10e. The 
result shows the maximum error is no more than 1% relative to the 
image size. 

Fig. 8. The Silver Beach Yellow River Bridge (cm): (a) front view of the Silver Beach Yellow River Bridge; (b) cross-sectional view of main beam.  

Fig. 9. Detector training and testing: (a) curve of the loss function; (b) precision-recall curves.  

Table 5 
APs of nine types of the vehicle on the testing dataset.  

Type Car SUV Light truck Pickup truck Minibus Bus Heavy truck Tractor trailer Special vehicle 

AP (%)  89.5  82.0  77.3  76.6  81.6  90.7  96.1  85.4  92.7  
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6.3. Vehicle spatiotemporal information acquisition 

Based on the camera position, location of the WCS, and the width of 
the lanes shown in Fig. 8b, the ROI was set as x∈[− 10,13] and y∈
[− 15,15] (no unit data). The speed limit on the bridge is 60 km/h, the 
frame rate of the camera is 30 fps. Since the vehicle traveled at a faster 
speed and with larger spacing, the threshold δ was set to 3.5 in term of 
Eq. (10). 

When the identification began, the type and confidence score of the 
vehicle in each frame were detected firstly, then the position coordinates 
in WCS and size were obtained by using the reconstruction model. The 
3D bounding box and confidence score of the detected vehicle were 

drawn and shown in Fig. 11. For the better visibility, the 3D bounding 
boxes of different types of vehicles were represented in different colors. 
As soon as a part of the vehicle body was detected, the system calculates 
the position and size of the vehicle accordingly. However, when the 
vehicle was not fully visible in the camera lens, the calculations were 
unreliable. 

When the vehicle was being tracked, the lane number of the vehicle 
was obtained by judging the relationship between the location of the 
vehicle and the lane markings on the bridge deck, the vehicle axle 
number was determined according to vehicle type and length as listed in 
Table 3. Once the identification and tracking of the vehicle were 
completed, the trajectory, instantaneous speed, average speed and the 

Fig. 10. Camera calibration: (a) images of the small calibration board used for the first calibration of the camera; (b) a cable-stayed bridge in operation; (c) large 
calibration board for the second calibration of the camera; (d) WCS was created on the bridge deck after the camera calibration; (e) the deviation in the second 
calibration. 
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moment were obtained. Assuming the vehicle was traveling at the 
average speed over the entire bridge deck and maintaining in the same 
lane, the vehicle spatiotemporal information was obtained. Since the 
detector have a certain probability of failure, erroneous results or missed 

detections can cause inconsistent between the tracking data and the 
actual situation. Similarly, when the position of the vehicle being 
detected has shifted, there was an error in the calculation of the size and 
speed. 

Fig. 11. Reconstruction of vehicle 3D bounding box: (a) Wuling Hongguang (minibus); (b) Chevrolet Cruze (car); (c) Mitsubishi Outlander (SUV); (d) Urban 
bus (bus). 

Fig. 12. Kernel density of the vehicle length: (a) Wuling Hongguang (minibus); (b) Chevrolet Cruze (car); (c) Mitsubishi Outlander (SUV); (d) Urban bus (bus). (Note: 
The horizontal coordinate represents the video frame number used in the calculation.) 
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6.4. Error analysis 

After identifying and tracking the different 4 vehicles (Wuling hon
gguang, Mitsubishi outlander, Chevrolet cruze, and urban bus. The 
lengths of them are 4.5 m, 4.705 m, 4.598 m, and 11.53 m respectively.) 
in four videos, kernel density maps of the vehicle length were drawn as 
shown in Fig. 12. The diagrams show that the calculated length of the 
same vehicle appearing in successive frames is not fixed but approaches 
the actual value with great probability. When the number of detected 
frames reaches 10 or more, the average of the calculated length is very 
close to the actual size. The same is true for the width and height of the 
vehicle, which are not listed here due to space limitation. Fig. 13 shows 
the trajectory of the four vehicles. X and Y are the two axes in WCS on 
the bridge deck. It can be seen from the diagram that the vehicle did not 
change lanes while travelling, and the trajectory and the lane markings 
are in an approximately parallel relationship. This is consistent with the 
actual situation. By calculating the position of the vehicle frame by 
frame, the instantaneous and average speed of the four vehicles were 
calculated based on the frame rate of the camera as shown in Fig. 14. As 
can be seen from the graph, there is a wide range of variations in the 
instantaneous speed of the vehicle. When the continuously calculated 
instantaneous speed is averaged, the variation of the average speed 
gradually stabilizes and approaching the actual speed. In order to 
compare the average speed with the actual speed, a timer was used to 
obtain the actual speed of vehicles, which was indicated by a solid green 
line in Fig. 14. When the tracking is complete, the error between the 
average speed and the actual speed is no more than 6%. 

The top five type of vehicles make up the vast majority of the total 
number of vehicles on urban bridges. Four videos were shot randomly 
for each type of vehicles in different lanes (1 and 2) and at different 
travelling speeds (fast and slow). After calculating the 20 sets of videos 
and statistically analyzing the results, the average errors in vehicle size 
and speed were listed in Table 6. There is some deviation of the detec
tion result relative to the real position of the vehicle during the vehicle 
detection, it will bring errors to the calculation of the vehicle parame
ters. The error is small-scale relative to the displacement generated by 
the vehicle in a certain time period, but it appears larger relative to the 
vehicle size. Therefore, the result shows that the calculation of speed is 
more accurate than that of sizes. 

Through calculation and analysis, it can be seen that the spatio
temporal information of moving vehicles on the bridge can be obtained 
in real time. However, errors in the vehicle detection, camera calibration 
and the constraint equation led to certain deviations between the 

calculated and actual results. This requires improvement of the algo
rithm in future research to improve the computational accuracy. 

6.5. Comparison with related works 

The most recent related studies are listed in Table 7. As can be seen 
from the table, DCNN is used for all methods of obtaining vehicle load 
information based on computer vision techniques. In order to calculate 
and extract vehicle information frame by frame, the efficiency and ac
curacy of the detector is critical. The latest research shows that the one- 
stage detector has obvious advantages, and YOLO-v4 is a significant 
improvement over the previous version of YOLO-v3 [35]. In our ex
periments, the inference time of one frame can reach 0.016 s, which fully 
meets the requirements of real-time detection. 

In terms of algorithm implementation, there are also significant 
differences. In the image calibration algorithm [27], data collection was 
performed using standard vehicles, and then the vehicle size is obtained 
based on fitting and interpolation of the data. Since all vehicles are 
divided into a total of three granularities for calibration: large, medium 
and small, the results are subject to significant deviations. In addition, 
image calibration was required before deployment on each bridge, 
which undoubtedly increased the cost of the system significantly. In the 
approach based on reference line [30], the authors use two lines on the 
bridge deck as a reference to map the information in the image to 3D 
space, from which the position of the vehicle is obtained. However, they 
argue that the method is simple, but at the expense of accuracy. In a 
latest report [31], the authors use a dual-target detection model to 
achieve estimation of vehicle size and position based on body and tail 
detection. The method has been proved to be feasible through field 
testing. However, the distance between the vehicle tail and the road, as 
well as the difficulty of detecting the tail of the vehicle, can causes errors 
in calculation. In addition, the detection of the tail of the vehicle makes 
the annotation of the data used for detector training increase exponen
tially. The last two studies listed in Table 7 both try to obtain the 3D 
dimensions of the vehicle through spatial mapping. However, our al
gorithm requires only the direct solution of the system of equations 
without any inter-frame iterative computation. 

In addition to the above, the results are analyzed and discussed in 
these reports. After image calibration and video calculations, the 
resulting vehicle speed and truck length are plotted in graphs [27]. It is 
estimated from the graphs that the error in the truck length is about 6% 
(No detailed data for reference), and approximately 6% of vehicles have 
an error of greater than 6% in their travel speed. In other reports 

Fig. 13. Trajectory of vehicles: (a) Wuling Hongguang (minibus); (b) Chevrolet Cruze (car); (c) Mitsubishi Outlander (SUV); (d) Urban bus (bus). (Note: Taking WCS 
on the bridge deck as the reference coordinate system.) 
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[28,30], only some graphs of the calculation results are given, and no 
more detailed data are listed. More detailed data are given in a report 
[31], where the maximum average error of length and width are 18.16% 
and 23.09% respectively. As can be seen from the figures, the transverse 
position of the vehicle within 10 frames showed a large fluctuation, so 
the trajectory also showed a large deviation relative to the actual tra
jectory. As a comparison, the maximum average errors of the vehicle 
length and width obtained with our approach are 9.9% and 8.78%, 
respectively. Also, the vehicle trajectory is closer to the actual trajectory 
in a very short period of time. 

Objectively evaluating the differences between these algorithms is 
challenging due to factors such as camera performance (Parameters and 
distortion), mounting location, working environment, and program 
code. However, by comparing the detector, the algorithm implementa
tion and the existing data, our algorithm is closer to reality and therefore 
achieves better accuracy. 

7. Conclusions 

An approach for obtaining the spatiotemporal information of vehicle 
loads based on 3D bounding box reconstruction with computer vision is 
proposed. Based on the creation of vehicle datasets, training of vehicle 
detector, and calibration of the camera, the reconstruction model of the 
vehicle 3D bounding box is proposed and the algorithm equations are 
derived. Meanwhile, the BVLIS with GUI was developed and tested on a 
bridge to verify the reliability of the approach. The main conclusions are 
as follows:  

(1) In this paper, the vehicle detection and projection matrix are 
obtained based on YOLO-v4 and camera calibration. Then the 
projection relationship between 2D and 3D bounding box is 
investigated and a 3D bounding box reconstruction algorithm for 
vehicle 3D is proposed. In contrast, our approach is closer to the 
actual because some assumptions and approximations that exis
ted in the previous works are eliminated.  

(2) Field tests have shown that the 3D bounding box of the vehicle 
can be reconstructed efficiently and accurately using the 
approach to obtain the size and spatial location of the vehicle. 
Then, based on the vehicle tracking, the spatiotemporal infor
mation of the vehicle is obtained.  

(3) One linear system of equations needs to be solved to obtain the 
size and location of the vehicle, so the algorithm is 

Fig. 14. Speed of vehicles: (a) Wuling Hongguang (minibus); (b) Chevrolet Cruze (car); (c) Mitsubishi Outlander (SUV); (d) Urban bus (bus). (Note: The instan
taneous speed is calculated from the displacement and time generated by the vehicle between two adjacent video frames.) 

Table 6 
Average error in size and speed.  

Type Length (%) Width (%) Height (%) Speed (%) 

Minibus  2.28  8.78  3.61  5.83 
SUV  6.00  2.54  3.92  2.54 
Car  6.72  5.99  2.58  5.73 
Bus  9.90  3.58  3.93  4.12 
Light truck  3.65  4.21  7.23  3.56  

Table 7 
Relate works.  

Related works Detector Algorithm implementation vehicle information    

Size Position Trajectory Speed 

[27] Faster R-CNN Image calibration √   √ 
[28] Faster R-CNN Detection based on DCNN  √   
[30] Mask R-CNN Reference line   √  
[31] YOLO-v3 dual-target vehicle detection model √ √ √  
Ours YOLO-v4 3D bounding box reconstruction model √ √ √ √  
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computationally compact and can be fully used for real-time 
identification of vehicle loads on bridge decks. Since only one 
calibration on the bridge deck is required, the system is easy to 
deploy and has little impact on traffic flow. 

In the future, we will explore the identification methods of vehicle 
axle number and wheelbase, as well as the fusion of data from multiple 
cameras on the full bridge deck, to further obtain more accurate and 
comprehensive spatiotemporal information of vehicle loads through 
algorithm improvement and vehicle re-identification. 
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